1887

Abstract

Although in different groups, the coronaviruses severe acute respiratory syndrome-coronavirus (SARS-CoV) and NL63 use the same receptor, angiotensin converting enzyme (ACE)-2, for entry into the host cell. Despite this common receptor, the consequence of entry is very different; severe respiratory distress in the case of SARS-CoV but frequently only a mild respiratory infection for NL63. Using a wholly recombinant system, we have investigated the ability of each virus receptor-binding protein, spike or S protein, to bind to ACE-2 in solution and on the cell surface. In both assays, we find that the NL63 S protein has a weaker interaction with ACE-2 than the SARS-CoV S protein, particularly in solution binding, but the residues required for contact are similar. We also confirm that the ACE-2-binding site of NL63 S lies between residues 190 and 739. A lower-affinity interaction with ACE-2 might partly explain the different pathological consequences of infection by SARS-CoV and NL63.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/003962-0
2008-11-01
2020-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/11/2741.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/003962-0&mimeType=html&fmt=ahah

References

  1. Chakraborti S., Prabakaran P., Xiao X., Dimitrov D. S. 2005; The SARS coronavirus S glycoprotein receptor binding domain: fine mapping and functional characterization. Virol J 2:73 [CrossRef]
    [Google Scholar]
  2. Chapple S. D., Jones I. M. 2002; Non-polar distribution of green fluorescent protein on the surface of Autographa californica nucleopolyhedrovirus using a heterologous membrane anchor. J Biotechnol 95:269–275 [CrossRef]
    [Google Scholar]
  3. Chen H., Xu X., Jones I. M. 2007; Immunogenicity of the outer domain of a HIV-1 clade C gp120. Retrovirology 4:33 [CrossRef]
    [Google Scholar]
  4. Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H. R., Becker S., Rabenau H., Panning M., Kolesnikova L. other authors 2003; Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976 [CrossRef]
    [Google Scholar]
  5. Feng Y., Gao G. F. 2007; Towards our understanding of SARS-CoV, an emerging and devastating but quickly conquered virus. Comp Immunol Microbiol Infect Dis 30:309–327 [CrossRef]
    [Google Scholar]
  6. Guy J. L., Jackson R. M., Jensen H. A., Hooper N. M., Turner A. J. 2005; Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis. FEBS J 272:3512–3520 [CrossRef]
    [Google Scholar]
  7. Hofmann H., Pyrc K., van der Hoek L., Geier M., Berkhout B., Pohlmann S. 2005; Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A 102:7988–7993 [CrossRef]
    [Google Scholar]
  8. Hofmann H., Simmons G., Rennekamp A. J., Chaipan C., Gramberg T., Heck E., Geier M., Wegele A., Marzi A. other authors 2006; Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J Virol 80:8639–8652 [CrossRef]
    [Google Scholar]
  9. Huang I. C., Bosch B. J., Li F., Li W., Lee K. H., Ghiran S., Vasilieva N., Dermody T. S., Harrison S. C. other authors 2006; SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem 281:3198–3203 [CrossRef]
    [Google Scholar]
  10. Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B., Yang P., Sarao R., Wada T. other authors 2005; Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436:112–116 [CrossRef]
    [Google Scholar]
  11. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Huan Y., Yang P., Zhang Y. other authors 2005; A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11:875–879 [CrossRef]
    [Google Scholar]
  12. Kuiken T., Fouchier R. A., Schutten M., Rimmelzwaan G. F., van Amerongen G., van Riel D., Laman J. D., de Jong T., van Doornum G. other authors 2003; Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362:263–270 [CrossRef]
    [Google Scholar]
  13. Li W., Moore M. J., Vasilieva N., Sui J., Wong S. K., Berne M. A., Somasundaran M., Sullivan J. L., Luzuriaga K. other authors 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454 [CrossRef]
    [Google Scholar]
  14. Li F., Li W., Farzan M., Harrison S. C. 2005a; Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309:1864–1868 [CrossRef]
    [Google Scholar]
  15. Li W., Zhang C., Sui J., Kuhn J. H., Moore M. J., Luo S., Wong S. K., Huang I. C., Xu K. other authors 2005b; Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 24:1634–1643 [CrossRef]
    [Google Scholar]
  16. Li W., Sui J., Huang I. C., Kuhn J. H., Radoshitzky S. R., Marasco W. A., Choe H., Farzan M. 2007; The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2. Virology 367:367–374 [CrossRef]
    [Google Scholar]
  17. Lin H. X., Feng Y., Wong G., Wang L., Li B., Zhao X., Li Y., Smaill F., Zhang C. 2008; Identification of residues in the receptor-binding domain (RBD) of the spike protein of human coronavirus NL63 that are critical for the RBD-ACE2 receptor interaction. J Gen Virol 89:1015–1024 [CrossRef]
    [Google Scholar]
  18. Marzi A., Gramberg T., Simmons G., Moller P., Rennekamp A. J., Krumbiegel M., Geier M., Eisemann J., Turza N. other authors 2004; DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol 78:12090–12095 [CrossRef]
    [Google Scholar]
  19. Pyrc K., Berkhout B., van der Hoek L. 2007; The novel human coronaviruses NL63 and HKU1. J Virol 81:3051–3057 [CrossRef]
    [Google Scholar]
  20. Sloots T. P., Whiley D. M., Lambert S. B., Nissen M. D. 2008; Emerging respiratory agents: new viruses for old diseases?. J Clin Virol 42:233–243 [CrossRef]
    [Google Scholar]
  21. Towler P., Staker B., Prasad S. G., Menon S., Tang J., Parsons T., Ryan D., Fisher M., Williams D. other authors 2004; ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem 279:17996–18007 [CrossRef]
    [Google Scholar]
  22. van der Hoek L. 2007; Human coronaviruses: what do they cause?. Antivir Ther 12:651–658
    [Google Scholar]
  23. van der Hoek L., Pyrc K., Jebbink M. F., Vermeulen-Oost W., Berkhout R. J., Wolthers K. C., Wertheim-van Dillen P. M., Kaandorp J., Spaargaren J., Berkhout B. 2004; Identification of a new human coronavirus. Nat Med 10:368–373 [CrossRef]
    [Google Scholar]
  24. van der Hoek L., Sure K., Ihorst G., Stang A., Pyrc K., Jebbink M. F., Petersen G., Forster J., Berkhout B., Uberla K. 2005; Croup is associated with the novel coronavirus NL63. PLoS Med 2:e240 [CrossRef]
    [Google Scholar]
  25. Wu P. S., Chang L. Y., Berkhout B., van der Hoek L., Lu C. Y., Kao C. L., Lee P. I., Shao P. L., Lee C. Y. other authors 2008; Clinical manifestations of human coronavirus NL63 infection in children in Taiwan. Eur J Pediatr 167:75–80 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/003962-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/003962-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error