1887

Abstract

BRCA1-associated protein 2 (BRAP2) is known to interact with the kinase suppressor of Ras 1 (KSR1), inhibiting the ERK signal transduction cascade. This study found that an Epstein–Barr virus (EBV) immediate-early protein, Rta, is a binding partner of BRAP2 in yeast and confirmed the binding by a glutathione -transferase pull-down assay and by co-immunoprecipitation in 293(maxi-EBV) cells. Binding studies also showed that Rta and KSR1 interacted with the C-terminal 202 aa region in BRAP2. Additionally, Rta appeared to prevent the binding of KSR1 to BRAP2, activating the ERK signal transduction pathway and the transcription of an EBV immediate-early gene, . Activation of the ERK signal transduction pathway by Rta may be critical for the maintenance of the lytic state of EBV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/003897-0
2008-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/10/2437.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/003897-0&mimeType=html&fmt=ahah

References

  1. Adamson A. L., Darr D., Holley-Guthrie E., Johnson R. A., Mauser A., Swenson J., Kenney S. 2000; Epstein–Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol 74:1224–1233 [CrossRef]
    [Google Scholar]
  2. Asada M., Ohmi K., Delia D., Enosawa S., Suzuki S., Yuo A., Suzuki H., Mizutani S. 2004; Brap2 functions as a cytoplasmic retention protein for p21 during monocyte differentiation. Mol Cell Biol 24:8236–8243 [CrossRef]
    [Google Scholar]
  3. Borras A. M., Strominger J. L., Speck S. H. 1996; Characterization of the ZI domains in the Epstein–Barr virus BZLF1 gene promoter: role in phorbol ester induction. J Virol 70:3894–3901
    [Google Scholar]
  4. Borza C. M., Hutt-Fletcher L. M. 2002; Alternate replication in B cells and epithelial cells switches tropism of Epstein–Barr virus. Nat Med 8:594–599 [CrossRef]
    [Google Scholar]
  5. Chang L. K., Liu S. T. 2000; Activation of the BRLF1 promoter and lytic cycle of Epstein–Barr virus by histone acetylation. Nucleic Acids Res 28:3918–3925 [CrossRef]
    [Google Scholar]
  6. Chang L. K., Lee Y. H., Cheng T. S., Hong Y. R., Lu P. J., Wang J. J., Wang W. H., Kuo C. W., Li S. S., Liu S. T. 2004; Post-translational modification of Rta of Epstein–Barr virus by SUMO-1. J Biol Chem 279:38803–38812 [CrossRef]
    [Google Scholar]
  7. Chang L. K., Chung J. Y., Hong Y. R., Ichimura T., Nakao M., Liu S. T. 2005; Activation of Sp1-mediated transcription by Rta of Epstein–Barr virus via an interaction with MCAF1. Nucleic Acids Res 33:6528–6539 [CrossRef]
    [Google Scholar]
  8. Chang P. J., Chang Y. S., Liu S. T. 1998; Role of Rta in the translation of bicistronic BZLF1 of Epstein–Barr virus. J Virol 72:5128–5136
    [Google Scholar]
  9. Chang Y., Lee H. H., Chen Y. T., Lu J., Wu S. Y., Chen C. W., Takada K., Tsai C. H. 2006; Induction of the early growth response 1 gene by Epstein–Barr virus lytic transactivator Zta. J Virol 80:7748–7755 [CrossRef]
    [Google Scholar]
  10. Chen C., Lewis R. E., White M. A. 2008; IMP modulates KSR1-dependent multivalent complex formation to specify ERK1/2 pathway activation and response thresholds. J Biol Chem 283:12789–12796 [CrossRef]
    [Google Scholar]
  11. Chevallier-Greco A., Manet E., Chavrier P., Mosnier C., Daillie J., Sergeant A. 1986; Both Epstein–Barr virus (EBV)-encoded trans -acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J 5:3243–3249
    [Google Scholar]
  12. Chiu Y. F., Tung C. P., Lee Y. H., Wang W. H., Li C., Hung J. Y., Wang C. Y., Kawaguchi Y., Liu S. T. 2007; A comprehensive library of mutations of Epstein–Barr virus. J Gen Virol 88:2463–2472 [CrossRef]
    [Google Scholar]
  13. Daibata M., Humphreys R. E., Takada K., Sairenji T. 1990; Activation of latent EBV via anti-IgG-triggered, second messenger pathways in the Burkitt's lymphoma cell line Akata. J Immunol 144:4788–4793
    [Google Scholar]
  14. Davies A. H., Grand R. J., Evans F. J., Rickinson A. B. 1991; Induction of Epstein–Barr virus lytic cycle by tumor-promoting and non-tumor-promoting phorbol esters requires active protein kinase C. J Virol 65:6838–6844
    [Google Scholar]
  15. Delecluse H. J., Hilsendegen T., Pich D., Zeidler R., Hammerschmidt W. 1998; Propagation and recovery of intact, infectious Epstein–Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A 95:8245–8250 [CrossRef]
    [Google Scholar]
  16. Diehl V., Henle G., Henle W., Kohn G. 1968; Demonstration of a herpes group virus in cultures of peripheral leukocytes from patients with infectious mononucleosis. J Virol 2:663–669
    [Google Scholar]
  17. Einhorn N., Klein G., Clifford P. 1970; Increase in antibody titer against the EBV-associated membrane antigen complex in Burkitt's lymphoma and nasopharyngeal carcinoma after local irradiation. Cancer 26:1013–1021 [CrossRef]
    [Google Scholar]
  18. Faggioni A., Zompetta C., Grimaldi S., Barile G., Frati L., Lazdins J. 1986; Calcium modulation activates Epstein–Barr virus genome in latently infected cells. Science 232:1554–1556 [CrossRef]
    [Google Scholar]
  19. Fahmi H., Cochet C., Hmama Z., Opolon P., Joab I. 2000; Transforming growth factor beta 1 stimulates expression of the Epstein–Barr virus BZLF1 immediate-early gene product ZEBRA by an indirect mechanism which requires the MAPK kinase pathway. J Virol 74:5810–5818 [CrossRef]
    [Google Scholar]
  20. Feederle R., Kost M., Baumann M., Janz A., Drouet E., Hammerschmidt W., Delecluse H. J. 2000; The Epstein–Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19:3080–3089 [CrossRef]
    [Google Scholar]
  21. Fenton M., Sinclair A. J. 1999; Divergent requirements for the MAPK(ERK) signal transduction pathway during initial virus infection of quiescent primary B cells and disruption of Epstein–Barr virus latency by phorbol esters. J Virol 73:8913–8916
    [Google Scholar]
  22. Flemington E., Speck S. H. 1990; Identification of phorbol ester response elements in the promoter of Epstein–Barr virus putative lytic switch gene BZLF1. J Virol 64:1217–1226
    [Google Scholar]
  23. Gao X., Ikuta K., Tajima M., Sairenji T. 2001; 12- O -tetradecanoylphorbol-13-acetate induces Epstein–Barr virus reactivation via NF- κ B and AP-1 as regulated by protein kinase C and mitogen-activated protein kinase. Virology 286:91–99 [CrossRef]
    [Google Scholar]
  24. Granato M., Farina A., Gonnella R., Santarelli R., Frati L., Faggioni A., Angeloni A. 2006; Regulation of the expression of the Epstein–Barr virus early gene BFRF1. Virology 347:109–116 [CrossRef]
    [Google Scholar]
  25. Guerreiro-Cacais A. O., Li L., Donati D., Bejarano M. T., Morgan A., Masucci M. G., Hutt-Fletcher L., Levitsky V. 2004; Capacity of Epstein–Barr virus to infect monocytes and inhibit their development into dendritic cells is affected by the cell type supporting virus replication. J Gen Virol 85:2767–2778 [CrossRef]
    [Google Scholar]
  26. Gunven P., Klein G., Henle G., Henle W., Clifford P. 1970; Epstein–Barr virus in Burkitt's lymphoma and nasopharyngeal carcinoma. Antibodies to EBV associated membrane and viral capsid antigens in Burkitt lymphoma patients. Nature 228:1053–1056 [CrossRef]
    [Google Scholar]
  27. Hardwick J. M., Lieberman P. M., Hayward S. D. 1988; A new Epstein–Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol 62:2274–2284
    [Google Scholar]
  28. Hsu T. Y., Chang Y., Wang P. W., Liu M. Y., Chen M. R., Chen J. Y., Tsai C. H. 2005; Reactivation of Epstein–Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol 86:317–322 [CrossRef]
    [Google Scholar]
  29. Hung C. H., Liu S. T. 1999; Characterization of the Epstein–Barr virus BALF2 promoter. J Gen Virol 80:2747–2750
    [Google Scholar]
  30. Johansson B., Klein G., Henle W., Henle G. 1970; Epstein–Barr virus (EBV)-associated antibody patterns in malignant lymphoma and leukemia. I. Hodgkin's disease. Int J Cancer 6:450–462 [CrossRef]
    [Google Scholar]
  31. Klein G., Geering G., Old L. J., Henle G., Henle W., Clifford P. 1970; Comparison of the anti-EBV titer and the EBV-associated membrane reactive and precipitating antibody levels in the sera of Burkitt lymphoma and nasopharyngeal carcinoma patients and controls. Int J Cancer 5:185–194 [CrossRef]
    [Google Scholar]
  32. Li S., Ku C. Y., Farmer A. A., Cong Y. S., Chen C. F., Lee W. H. 1998; Identification of a novel cytoplasmic protein that specifically binds to nuclear localization signal motifs. J Biol Chem 273:6183–6189 [CrossRef]
    [Google Scholar]
  33. Lin G. H., Chen C. L., Tschen J. S., Tsay S. S., Chang Y. S., Liu S. T. 1998; Molecular cloning and characterization of fengycin synthetase gene fenB from Bacillus subtilis . J Bacteriol 180:1338–1341
    [Google Scholar]
  34. Liu S. T., Wang W. H., Hong Y. R., Chuang J. Y., Lu P. J., Chang L. K. 2006; Sumoylation of Rta of Epstein–Barr virus is preferentially enhanced by PIASx β . Virus Res 119:163–170 [CrossRef]
    [Google Scholar]
  35. Lu C. C., Jeng Y. Y., Tsai C. H., Liu M. Y., Yeh S. W., Hsu T. Y., Chen M. R. 2006; Genome-wide transcription program and expression of the Rta responsive gene of Epstein–Barr virus. Virology 345:358–372 [CrossRef]
    [Google Scholar]
  36. Luka J., Kallin B., Klein G. 1979; Induction of the Epstein–Barr virus (EBV) cycle in latently infected cells by n -butyrate. Virology 94:228–231 [CrossRef]
    [Google Scholar]
  37. Matheny S. A., White M. A. 2006; Ras-sensitive IMP modulation of the Raf/MEK/ERK cascade through KSR1. Methods Enzymol 407:237–247
    [Google Scholar]
  38. Matheny S. A., Chen C., Kortum R. L., Razidlo G. L., Lewis R. E., White M. A. 2004; Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature 427:256–260 [CrossRef]
    [Google Scholar]
  39. Morton S., Davis R. J., Cohen P. 2004; Signalling pathways involved in multisite phosphorylation of the transcription factor ATF-2. FEBS Lett 572:177–183 [CrossRef]
    [Google Scholar]
  40. Müller J., Ory S., Copeland T., Piwnica-Worms H., Morrison D. K. 2001; C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell 8:983–993 [CrossRef]
    [Google Scholar]
  41. Nguyen A., Burack W. R., Stock J. L., Kortum R., Chaika O. V., Afkarian M., Muller W. J., Murphy K. M., Morrison D. K. other authors 2002; Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol Cell Biol 22:3035–3045 [CrossRef]
    [Google Scholar]
  42. Ouwens D. M., de Ruiter N. D., van der Zon G. C., Carter A. P., Schouten J., van der Burgt C., Kooistra K., Bos J. L., Maassen J. A., van Dam H. 2002; Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras–MEK–ERK pathway and of Thr69 through RalGDS–Src–p38. EMBO J 21:3782–3793 [CrossRef]
    [Google Scholar]
  43. Pai M. T., Tzeng S. R., Kovacs J. J., Keaton M. A., Li S. S., Yao T. P., Zhou P. 2007; Solution structure of the Ubp-M BUZ domain, a highly specific protein module that recognizes the C-terminal tail of free ubiquitin. J Mol Biol 370:290–302 [CrossRef]
    [Google Scholar]
  44. Ragoczy T., Heston L., Miller G. 1998; The Epstein–Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72:7978–7984
    [Google Scholar]
  45. Roy F., Laberge G., Douziech M., Ferland-McCollough D., Therrien M. 2002; KSR is a scaffold required for activation of the ERK/MAPK module. Genes Dev 16:427–438 [CrossRef]
    [Google Scholar]
  46. Satoh T., Hoshikawa Y., Satoh Y., Kurata T., Sairenji T. 1999; The interaction of mitogen-activated protein kinases to Epstein–Barr virus activation in Akata cells. Virus Genes 18:57–64 [CrossRef]
    [Google Scholar]
  47. Swenson J. J., Mauser A. E., Kaufmann W. K., Kenney S. C. 1999; The Epstein–Barr virus protein BRLF1 activates S phase entry through E2F1 induction. J Virol 73:6540–6550
    [Google Scholar]
  48. Zacny V. L., Wilson J., Pagano J. S. 1998; The Epstein–Barr virus immediate-early gene product, BRLF1, interacts with the retinoblastoma protein during the viral lytic cycle. J Virol 72:8043–8051
    [Google Scholar]
  49. Zalani S., Holley-Guthrie E., Kenney S. 1996; Epstein–Barr viral latency is disrupted by the immediate-early BRLF1 protein through a cell-specific mechanism. Proc Natl Acad Sci U S A 93:9194–9199 [CrossRef]
    [Google Scholar]
  50. Zhang Y., Yao B., Delikat S., Bayoumy S., Lin X. H., Basu S., McGinley M., Chan-Hui P. Y., Lichenstein H., Kolesnick R. 1997; Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89:63–72 [CrossRef]
    [Google Scholar]
  51. zur Hausen H., O'Neill F. J., Freese U. K., Hecker E. 1978; Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272:373–375 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/003897-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/003897-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error