1887

Abstract

BRCA1-associated protein 2 (BRAP2) is known to interact with the kinase suppressor of Ras 1 (KSR1), inhibiting the ERK signal transduction cascade. This study found that an Epstein–Barr virus (EBV) immediate-early protein, Rta, is a binding partner of BRAP2 in yeast and confirmed the binding by a glutathione -transferase pull-down assay and by co-immunoprecipitation in 293(maxi-EBV) cells. Binding studies also showed that Rta and KSR1 interacted with the C-terminal 202 aa region in BRAP2. Additionally, Rta appeared to prevent the binding of KSR1 to BRAP2, activating the ERK signal transduction pathway and the transcription of an EBV immediate-early gene, . Activation of the ERK signal transduction pathway by Rta may be critical for the maintenance of the lytic state of EBV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/003897-0
2008-10-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/10/2437.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/003897-0&mimeType=html&fmt=ahah

References

  1. Adamson, A. L., Darr, D., Holley-Guthrie, E., Johnson, R. A., Mauser, A., Swenson, J. & Kenney, S. ( 2000; ). Epstein–Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol 74, 1224–1233.[CrossRef]
    [Google Scholar]
  2. Asada, M., Ohmi, K., Delia, D., Enosawa, S., Suzuki, S., Yuo, A., Suzuki, H. & Mizutani, S. ( 2004; ). Brap2 functions as a cytoplasmic retention protein for p21 during monocyte differentiation. Mol Cell Biol 24, 8236–8243.[CrossRef]
    [Google Scholar]
  3. Borras, A. M., Strominger, J. L. & Speck, S. H. ( 1996; ). Characterization of the ZI domains in the Epstein–Barr virus BZLF1 gene promoter: role in phorbol ester induction. J Virol 70, 3894–3901.
    [Google Scholar]
  4. Borza, C. M. & Hutt-Fletcher, L. M. ( 2002; ). Alternate replication in B cells and epithelial cells switches tropism of Epstein–Barr virus. Nat Med 8, 594–599.[CrossRef]
    [Google Scholar]
  5. Chang, L. K. & Liu, S. T. ( 2000; ). Activation of the BRLF1 promoter and lytic cycle of Epstein–Barr virus by histone acetylation. Nucleic Acids Res 28, 3918–3925.[CrossRef]
    [Google Scholar]
  6. Chang, L. K., Lee, Y. H., Cheng, T. S., Hong, Y. R., Lu, P. J., Wang, J. J., Wang, W. H., Kuo, C. W., Li, S. S. & Liu, S. T. ( 2004; ). Post-translational modification of Rta of Epstein–Barr virus by SUMO-1. J Biol Chem 279, 38803–38812.[CrossRef]
    [Google Scholar]
  7. Chang, L. K., Chung, J. Y., Hong, Y. R., Ichimura, T., Nakao, M. & Liu, S. T. ( 2005; ). Activation of Sp1-mediated transcription by Rta of Epstein–Barr virus via an interaction with MCAF1. Nucleic Acids Res 33, 6528–6539.[CrossRef]
    [Google Scholar]
  8. Chang, P. J., Chang, Y. S. & Liu, S. T. ( 1998; ). Role of Rta in the translation of bicistronic BZLF1 of Epstein–Barr virus. J Virol 72, 5128–5136.
    [Google Scholar]
  9. Chang, Y., Lee, H. H., Chen, Y. T., Lu, J., Wu, S. Y., Chen, C. W., Takada, K. & Tsai, C. H. ( 2006; ). Induction of the early growth response 1 gene by Epstein–Barr virus lytic transactivator Zta. J Virol 80, 7748–7755.[CrossRef]
    [Google Scholar]
  10. Chen, C., Lewis, R. E. & White, M. A. ( 2008; ). IMP modulates KSR1-dependent multivalent complex formation to specify ERK1/2 pathway activation and response thresholds. J Biol Chem 283, 12789–12796.[CrossRef]
    [Google Scholar]
  11. Chevallier-Greco, A., Manet, E., Chavrier, P., Mosnier, C., Daillie, J. & Sergeant, A. ( 1986; ). Both Epstein–Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J 5, 3243–3249.
    [Google Scholar]
  12. Chiu, Y. F., Tung, C. P., Lee, Y. H., Wang, W. H., Li, C., Hung, J. Y., Wang, C. Y., Kawaguchi, Y. & Liu, S. T. ( 2007; ). A comprehensive library of mutations of Epstein–Barr virus. J Gen Virol 88, 2463–2472.[CrossRef]
    [Google Scholar]
  13. Daibata, M., Humphreys, R. E., Takada, K. & Sairenji, T. ( 1990; ). Activation of latent EBV via anti-IgG-triggered, second messenger pathways in the Burkitt's lymphoma cell line Akata. J Immunol 144, 4788–4793.
    [Google Scholar]
  14. Davies, A. H., Grand, R. J., Evans, F. J. & Rickinson, A. B. ( 1991; ). Induction of Epstein–Barr virus lytic cycle by tumor-promoting and non-tumor-promoting phorbol esters requires active protein kinase C. J Virol 65, 6838–6844.
    [Google Scholar]
  15. Delecluse, H. J., Hilsendegen, T., Pich, D., Zeidler, R. & Hammerschmidt, W. ( 1998; ). Propagation and recovery of intact, infectious Epstein–Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A 95, 8245–8250.[CrossRef]
    [Google Scholar]
  16. Diehl, V., Henle, G., Henle, W. & Kohn, G. ( 1968; ). Demonstration of a herpes group virus in cultures of peripheral leukocytes from patients with infectious mononucleosis. J Virol 2, 663–669.
    [Google Scholar]
  17. Einhorn, N., Klein, G. & Clifford, P. ( 1970; ). Increase in antibody titer against the EBV-associated membrane antigen complex in Burkitt's lymphoma and nasopharyngeal carcinoma after local irradiation. Cancer 26, 1013–1021.[CrossRef]
    [Google Scholar]
  18. Faggioni, A., Zompetta, C., Grimaldi, S., Barile, G., Frati, L. & Lazdins, J. ( 1986; ). Calcium modulation activates Epstein–Barr virus genome in latently infected cells. Science 232, 1554–1556.[CrossRef]
    [Google Scholar]
  19. Fahmi, H., Cochet, C., Hmama, Z., Opolon, P. & Joab, I. ( 2000; ). Transforming growth factor beta 1 stimulates expression of the Epstein–Barr virus BZLF1 immediate-early gene product ZEBRA by an indirect mechanism which requires the MAPK kinase pathway. J Virol 74, 5810–5818.[CrossRef]
    [Google Scholar]
  20. Feederle, R., Kost, M., Baumann, M., Janz, A., Drouet, E., Hammerschmidt, W. & Delecluse, H. J. ( 2000; ). The Epstein–Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19, 3080–3089.[CrossRef]
    [Google Scholar]
  21. Fenton, M. & Sinclair, A. J. ( 1999; ). Divergent requirements for the MAPK(ERK) signal transduction pathway during initial virus infection of quiescent primary B cells and disruption of Epstein–Barr virus latency by phorbol esters. J Virol 73, 8913–8916.
    [Google Scholar]
  22. Flemington, E. & Speck, S. H. ( 1990; ). Identification of phorbol ester response elements in the promoter of Epstein–Barr virus putative lytic switch gene BZLF1. J Virol 64, 1217–1226.
    [Google Scholar]
  23. Gao, X., Ikuta, K., Tajima, M. & Sairenji, T. ( 2001; ). 12-O-tetradecanoylphorbol-13-acetate induces Epstein–Barr virus reactivation via NF-κB and AP-1 as regulated by protein kinase C and mitogen-activated protein kinase. Virology 286, 91–99.[CrossRef]
    [Google Scholar]
  24. Granato, M., Farina, A., Gonnella, R., Santarelli, R., Frati, L., Faggioni, A. & Angeloni, A. ( 2006; ). Regulation of the expression of the Epstein–Barr virus early gene BFRF1. Virology 347, 109–116.[CrossRef]
    [Google Scholar]
  25. Guerreiro-Cacais, A. O., Li, L., Donati, D., Bejarano, M. T., Morgan, A., Masucci, M. G., Hutt-Fletcher, L. & Levitsky, V. ( 2004; ). Capacity of Epstein–Barr virus to infect monocytes and inhibit their development into dendritic cells is affected by the cell type supporting virus replication. J Gen Virol 85, 2767–2778.[CrossRef]
    [Google Scholar]
  26. Gunven, P., Klein, G., Henle, G., Henle, W. & Clifford, P. ( 1970; ). Epstein–Barr virus in Burkitt's lymphoma and nasopharyngeal carcinoma. Antibodies to EBV associated membrane and viral capsid antigens in Burkitt lymphoma patients. Nature 228, 1053–1056.[CrossRef]
    [Google Scholar]
  27. Hardwick, J. M., Lieberman, P. M. & Hayward, S. D. ( 1988; ). A new Epstein–Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol 62, 2274–2284.
    [Google Scholar]
  28. Hsu, T. Y., Chang, Y., Wang, P. W., Liu, M. Y., Chen, M. R., Chen, J. Y. & Tsai, C. H. ( 2005; ). Reactivation of Epstein–Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol 86, 317–322.[CrossRef]
    [Google Scholar]
  29. Hung, C. H. & Liu, S. T. ( 1999; ). Characterization of the Epstein–Barr virus BALF2 promoter. J Gen Virol 80, 2747–2750.
    [Google Scholar]
  30. Johansson, B., Klein, G., Henle, W. & Henle, G. ( 1970; ). Epstein–Barr virus (EBV)-associated antibody patterns in malignant lymphoma and leukemia. I. Hodgkin's disease. Int J Cancer 6, 450–462.[CrossRef]
    [Google Scholar]
  31. Klein, G., Geering, G., Old, L. J., Henle, G., Henle, W. & Clifford, P. ( 1970; ). Comparison of the anti-EBV titer and the EBV-associated membrane reactive and precipitating antibody levels in the sera of Burkitt lymphoma and nasopharyngeal carcinoma patients and controls. Int J Cancer 5, 185–194.[CrossRef]
    [Google Scholar]
  32. Li, S., Ku, C. Y., Farmer, A. A., Cong, Y. S., Chen, C. F. & Lee, W. H. ( 1998; ). Identification of a novel cytoplasmic protein that specifically binds to nuclear localization signal motifs. J Biol Chem 273, 6183–6189.[CrossRef]
    [Google Scholar]
  33. Lin, G. H., Chen, C. L., Tschen, J. S., Tsay, S. S., Chang, Y. S. & Liu, S. T. ( 1998; ). Molecular cloning and characterization of fengycin synthetase gene fenB from Bacillus subtilis. J Bacteriol 180, 1338–1341.
    [Google Scholar]
  34. Liu, S. T., Wang, W. H., Hong, Y. R., Chuang, J. Y., Lu, P. J. & Chang, L. K. ( 2006; ). Sumoylation of Rta of Epstein–Barr virus is preferentially enhanced by PIASxβ. Virus Res 119, 163–170.[CrossRef]
    [Google Scholar]
  35. Lu, C. C., Jeng, Y. Y., Tsai, C. H., Liu, M. Y., Yeh, S. W., Hsu, T. Y. & Chen, M. R. ( 2006; ). Genome-wide transcription program and expression of the Rta responsive gene of Epstein–Barr virus. Virology 345, 358–372.[CrossRef]
    [Google Scholar]
  36. Luka, J., Kallin, B. & Klein, G. ( 1979; ). Induction of the Epstein–Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94, 228–231.[CrossRef]
    [Google Scholar]
  37. Matheny, S. A. & White, M. A. ( 2006; ). Ras-sensitive IMP modulation of the Raf/MEK/ERK cascade through KSR1. Methods Enzymol 407, 237–247.
    [Google Scholar]
  38. Matheny, S. A., Chen, C., Kortum, R. L., Razidlo, G. L., Lewis, R. E. & White, M. A. ( 2004; ). Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature 427, 256–260.[CrossRef]
    [Google Scholar]
  39. Morton, S., Davis, R. J. & Cohen, P. ( 2004; ). Signalling pathways involved in multisite phosphorylation of the transcription factor ATF-2. FEBS Lett 572, 177–183.[CrossRef]
    [Google Scholar]
  40. Müller, J., Ory, S., Copeland, T., Piwnica-Worms, H. & Morrison, D. K. ( 2001; ). C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell 8, 983–993.[CrossRef]
    [Google Scholar]
  41. Nguyen, A., Burack, W. R., Stock, J. L., Kortum, R., Chaika, O. V., Afkarian, M., Muller, W. J., Murphy, K. M., Morrison, D. K. & other authors ( 2002; ). Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol Cell Biol 22, 3035–3045.[CrossRef]
    [Google Scholar]
  42. Ouwens, D. M., de Ruiter, N. D., van der Zon, G. C., Carter, A. P., Schouten, J., van der Burgt, C., Kooistra, K., Bos, J. L., Maassen, J. A. & van Dam, H. ( 2002; ). Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras–MEK–ERK pathway and of Thr69 through RalGDS–Src–p38. EMBO J 21, 3782–3793.[CrossRef]
    [Google Scholar]
  43. Pai, M. T., Tzeng, S. R., Kovacs, J. J., Keaton, M. A., Li, S. S., Yao, T. P. & Zhou, P. ( 2007; ). Solution structure of the Ubp-M BUZ domain, a highly specific protein module that recognizes the C-terminal tail of free ubiquitin. J Mol Biol 370, 290–302.[CrossRef]
    [Google Scholar]
  44. Ragoczy, T., Heston, L. & Miller, G. ( 1998; ). The Epstein–Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72, 7978–7984.
    [Google Scholar]
  45. Roy, F., Laberge, G., Douziech, M., Ferland-McCollough, D. & Therrien, M. ( 2002; ). KSR is a scaffold required for activation of the ERK/MAPK module. Genes Dev 16, 427–438.[CrossRef]
    [Google Scholar]
  46. Satoh, T., Hoshikawa, Y., Satoh, Y., Kurata, T. & Sairenji, T. ( 1999; ). The interaction of mitogen-activated protein kinases to Epstein–Barr virus activation in Akata cells. Virus Genes 18, 57–64.[CrossRef]
    [Google Scholar]
  47. Swenson, J. J., Mauser, A. E., Kaufmann, W. K. & Kenney, S. C. ( 1999; ). The Epstein–Barr virus protein BRLF1 activates S phase entry through E2F1 induction. J Virol 73, 6540–6550.
    [Google Scholar]
  48. Zacny, V. L., Wilson, J. & Pagano, J. S. ( 1998; ). The Epstein–Barr virus immediate-early gene product, BRLF1, interacts with the retinoblastoma protein during the viral lytic cycle. J Virol 72, 8043–8051.
    [Google Scholar]
  49. Zalani, S., Holley-Guthrie, E. & Kenney, S. ( 1996; ). Epstein–Barr viral latency is disrupted by the immediate-early BRLF1 protein through a cell-specific mechanism. Proc Natl Acad Sci U S A 93, 9194–9199.[CrossRef]
    [Google Scholar]
  50. Zhang, Y., Yao, B., Delikat, S., Bayoumy, S., Lin, X. H., Basu, S., McGinley, M., Chan-Hui, P. Y., Lichenstein, H. & Kolesnick, R. ( 1997; ). Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89, 63–72.[CrossRef]
    [Google Scholar]
  51. zur Hausen, H., O'Neill, F. J., Freese, U. K. & Hecker, E. ( 1978; ). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272, 373–375.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/003897-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/003897-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error