1887

Abstract

It has previously been demonstrated that there are two distinct mechanisms for genetic resistance to human immunodeficiency virus type 1 (HIV-1) conferred by the gene: the loss of wild-type CCR5 surface expression and the generation of CCR5Δ32 protein, which interacts with CXCR4. To analyse the protective effects of long-term expression of the CCR5Δ32 protein, recombinant lentiviral vectors were used to deliver the gene into human cell lines and primary peripheral blood mononuclear cells that had been immortalized by human T-cell leukemia virus type 1. Blasticidin S-resistant cell lines expressing the lentivirus-encoded showed a significant reduction in HIV-1 Env-mediated fusion assays. It was shown that CD4 T lymphocytes expressing the lentivirus-encoded gene were highly resistant to infection by a primary but not by a laboratory-adapted X4 strain, suggesting different infectivity requirements. In contrast to previous studies that analysed the CCR5Δ32 protective effects in a transient expression system, this study showed that long-term expression of CCR5Δ32 conferred resistance to HIV-1 despite cell-surface expression of the HIV co-receptors. The results suggest an additional unknown mechanism for generating the CCR5Δ32 resistance phenotype and support the hypothesis that the CCR5Δ32 protein acts as an HIV-suppressive factor by altering the stoichiometry of the molecules involved in HIV-1 entry. The lentiviral–CCR5Δ32 vectors offer a method of generating HIV-resistant cells by delivery of the gene that may be useful for stem cell- or T-cell-based gene therapy for HIV-1 infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/003624-0
2008-10-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/10/2611.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/003624-0&mimeType=html&fmt=ahah

References

  1. Agrawal, L., Lu, X., Qingwen, J., VanHorn-Ali, Z., Nicolescue, V., McDermott, D., Murphy, P. M. & Alkhatib, G. ( 2004; ). Role for CCR5Δ32 protein in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1 in primary CD4+ cells. J Virol 78, 2277–2287.[CrossRef]
    [Google Scholar]
  2. Agrawal, L., Jin, Q., Altenburg, J., Meyer, L., Tubiana, R., Theodorou, I. & Alkhatib, G. ( 2007; ). CCR5Δ32 protein expression and stability are critical for resistance to human immunodeficiency virus type 1 in vivo. J Virol 81, 8041–8049.[CrossRef]
    [Google Scholar]
  3. Alkhatib, G. & Berger, E. A. ( 2007; ). HIV coreceptors: from discovery and designation to new paradigms and promise. Eur J Med Res 12, 375–384.
    [Google Scholar]
  4. Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M. & Berger, E. A. ( 1996; ). CC CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958.[CrossRef]
    [Google Scholar]
  5. Alkhatib, G., Liao, F., Berger, E. A., Farber, J. M. & Peden, K. W. ( 1997; ). A new SIV co-receptor, STRL33. Nature 388, 238 [CrossRef]
    [Google Scholar]
  6. Barry, S. C., Harder, B., Brzezinski, M., Flint, L. Y., Seppen, J. & Osborne, W. R. ( 2001; ). Lentivirus vectors encoding both central polypurine tract and posttranscriptional regulatory element provide enhanced transduction and transgene expression. Hum Gene Ther 12, 1103–1108.[CrossRef]
    [Google Scholar]
  7. Benkirane, M., Jin, D. Y., Chun, R. F., Koup, R. A. & Jeang, K. T. ( 1997; ). Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5Δ32. J Biol Chem 272, 30603–30606.[CrossRef]
    [Google Scholar]
  8. Bleul, C. C., Wu, L., Hoxie, J. A., Springer, T. A. & Mackay, C. R. ( 1997; ). The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci U S A 94, 1925–1930.[CrossRef]
    [Google Scholar]
  9. Braciak, T. A., Bacon, K., Xing, Z., Torry, D. J., Graham, F. L., Schall, T. J., Richards, C. D., Croitoru, K. & Gauldie, J. ( 1996; ). Overexpression of RANTES using a recombinant adenovirus vector induces the tissue-directed recruitment of monocytes to the lung. J Immunol 157, 5076–5084.
    [Google Scholar]
  10. Broder, C. C. & Berger, E. A. ( 1995; ). Fusogenic selectivity of the envelope glycoprotein is a major determinant of human immunodeficiency virus type 1 tropism for CD4+ T-cell lines vs. primary macrophages. Proc Natl Acad Sci U S A 92, 9004–9008.[CrossRef]
    [Google Scholar]
  11. Broder, C. C. & Earl, P. L. ( 1999; ). Recombinant vaccinia viruses. Design, generation, and isolation. Mol Biotechnol 13, 223–245.[CrossRef]
    [Google Scholar]
  12. Broxmeyer, H. E., Srour, E., Orschell, C., Ingram, D. A., Cooper, S., Plett, P. A., Mead, L. E. & Yoder, M. C. ( 2006; ). Cord blood stem and progenitor cells. Methods Enzymol 419, 439–473.
    [Google Scholar]
  13. Chelli, M. & Alizon, M. ( 2001; ). Determinants of the trans-dominant negative effect of truncated forms of the CCR5 chemokine receptor. J Biol Chem 276, 46975–46982.[CrossRef]
    [Google Scholar]
  14. Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., Wu, L., Mackay, C. R., LaRosa, G. & other authors ( 1996; ). The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135–1148.[CrossRef]
    [Google Scholar]
  15. Collins, N. D., Newbound, G. C., Ratner, L. & Lairmore, M. D. ( 1996; ). In vitro CD4+ lymphocyte transformation and infection in a rabbit model with a molecular clone of human T-cell lymphotrophic virus type 1. J Virol 70, 7241–7246.
    [Google Scholar]
  16. Dean, M., Carrington, M., Winkler, C., Huttley, G. A., Smith, M. W., Allikmets, R., Goedert, J. J., Buchbinder, S. P., Vittinghoff, E. & other authors ( 1996; ). Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273, 1856–1862.[CrossRef]
    [Google Scholar]
  17. Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., Di Marzio, P., Marmon, S., Sutton, R. E. & other authors ( 1996; ). Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666.[CrossRef]
    [Google Scholar]
  18. Doranz, B. J., Rucker, J., Yi, Y., Smyth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G. & Doms, R. W. ( 1996; ). A dual-tropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149–1158.[CrossRef]
    [Google Scholar]
  19. Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huang, Y. X., Nagashima, K. A., Cayanan, C., Maddon, P. J., Koup, R. A. & other authors ( 1996; ). HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673.[CrossRef]
    [Google Scholar]
  20. Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D. & Naldini, L. ( 1998; ). A third-generation lentivirus vector with a conditional packaging system. J Virol 72, 8463–8471.
    [Google Scholar]
  21. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. ( 1996; ). HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877.[CrossRef]
    [Google Scholar]
  22. Hladik, F., Liu, H., Speelmon, E., Livingston-Rosanoff, D., Wilson, S., Sakchalathorn, P., Hwangbo, Y., Greene, B., Zhu, T. & McElrath, M. J. ( 2005; ). Combined effect of CCR5-Δ32 heterozygosity and the CCR5 promoter polymorphism −2459 A/G on CCR5 expression and resistance to human immunodeficiency virus type 1 transmission. J Virol 79, 11677–11684.[CrossRef]
    [Google Scholar]
  23. Kabat, D., Kozak, S. L., Wehrly, K. & Chesebro, B. ( 1994; ). Differences in CD4 dependence for infectivity of laboratory-adapted and primary patient isolates of human immunodeficiency virus type 1. J Virol 68, 2570–2577.
    [Google Scholar]
  24. Ketas, T. J., Kuhmann, S. E., Palmer, A., Zurita, J., He, W., Ahuja, S. K., Klasse, P. J. & Moore, J. P. ( 2007; ). Cell surface expression of CCR5 and other host factors influence the inhibition of HIV-1 infection of human lymphocytes by CCR5 ligands. Virology 364, 281–290.[CrossRef]
    [Google Scholar]
  25. Kuhmann, S. E., Platt, E. J., Kozak, S. L. & Kabat, D. ( 2000; ). Cooperation of multiple CCR5 coreceptors is required for infections by human immunodeficiency virus type 1. J Virol 74, 7005–7015.[CrossRef]
    [Google Scholar]
  26. Lee, B., Sharron, M., Montaner, L. J., Weissman, D. & Doms, R. W. ( 1999; ). Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A 96, 5215–5220.[CrossRef]
    [Google Scholar]
  27. Markham, P. D., Salahuddin, S. Z., Kalyanaraman, V. S., Popovic, M., Sarin, P. & Gallo, R. C. ( 1983; ). Infection and transformation of fresh human umbilical cord blood cells by multiple sources of human T-cell leukemia-lymphoma virus (HTLV). Int J Cancer 31, 413–420.[CrossRef]
    [Google Scholar]
  28. Mellado, M., Serrano, A., Martínez, C. & Rodríguez-Frade, J. M. ( 2006; ). G protein-coupled receptor dimerization and signaling. Methods Mol Biol 332, 141–157.
    [Google Scholar]
  29. Meyer, L., Magierowska, M., Hubert, J. B., Rouzioux, C., Deveau, C., Sanson, F., Debre, P., Delfraissy, J. F. & Theodorou, I., & The SEROCO Study Group ( 1997; ). Early protective effect of CCR-5Δ32 heterozygosity on HIV-1 disease progression: relationship with viral load. AIDS 11, F73–F78.[CrossRef]
    [Google Scholar]
  30. Miyoshi, I., Kubonishi, I., Yoshimoto, S., Akagi, T., Ohtsuki, Y., Shiraishi, Y., Nagata, K. & Hinuma, Y. ( 1981; ). Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature 294, 770–771.[CrossRef]
    [Google Scholar]
  31. Nussbaum, O., Broder, C. C. & Berger, E. A. ( 1994; ). Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. J Virol 68, 5411–5422.
    [Google Scholar]
  32. O'Brien, S. J. & Moore, J. P. ( 2000; ). The effect of genetic variation in chemokines and their receptors on HIV transmission and progression to AIDS. Immunol Rev 177, 99–111.[CrossRef]
    [Google Scholar]
  33. Pello, O. M., Martínez-Muñoz, L., Parrillas, V., Serrano, A., Rodríguez-Frade, J. M., Toro, M. J., Lucas, P., Monterrubio, M., Martínez, A. C. & Mellado, M. ( 2008; ). Ligand stabilization of CXCR4/δ-opioid receptor heterodimers reveals a mechanism for immune response regulation. Eur J Immunol 38, 537–549.[CrossRef]
    [Google Scholar]
  34. Popovic, M., Lange-Wantzin, G., Sarin, P. S., Mann, D. & Gallo, R. C. ( 1983; ). Transformation of human umbilical cord blood T cells by human T-cell leukemia/lymphoma virus. Proc Natl Acad Sci U S A 80, 5402–5406.[CrossRef]
    [Google Scholar]
  35. Rodríguez-Frade, J. M., del Real, G., Serrano, A., Hernanz-Falcón, P., Soriano, S. F., Vila-Coro, A. J., de Ana, A. M., Lucas, P., Prieto, I. & other authors ( 2004; ). Blocking HIV-1 infection via CCR5 and CXCR4 receptors by acting in trans on the CCR2 chemokine receptor. EMBO J 23, 66–76.[CrossRef]
    [Google Scholar]
  36. Sohy, D., Parmentier, M. & Springael, J. Y. ( 2007; ). Allosteric transinhibition by specific antagonists in CCR2/CXCR4 heterodimers. J Biol Chem 282, 30062–30069.[CrossRef]
    [Google Scholar]
  37. Sun, Z., Denton, P. W., Estes, J. D., Othieno, F. A., Wei, B. L., Wege, A. K., Melkus, M. W., Padgett-Thomas, A., Zupancic, M. & other authors ( 2007; ). Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med 204, 705–714.[CrossRef]
    [Google Scholar]
  38. Swan, C. H. & Torbett, B. E. ( 2006; ). Can gene delivery close the door to HIV-1 entry after escape? J Med Primatol 35, 236–247.[CrossRef]
    [Google Scholar]
  39. Theodorou, I., Meyer, L., Magierowska, M., Katlama, C. & Rouzioux, C. ( 1997; ). HIV-1 infection in an individual homozygous for CCR5Δ32. Lancet 349, 1219–1220.
    [Google Scholar]
  40. Venkatesan, S., Petrovic, A., Van Ryk, D. I., Locati, M., Weissman, D. & Murphy, P. M. ( 2002; ). Reduced cell surface expression of CCR5 in CCR5Δ32 heterozygotes is mediated by gene dosage, rather than by receptor sequestration. J Biol Chem 277, 2287–2301.[CrossRef]
    [Google Scholar]
  41. Wolkowicz, R. & Nolan, G. P. ( 2005; ). Gene therapy progress and prospects: novel gene therapy approaches for AIDS. Gene Ther 12, 467–476.[CrossRef]
    [Google Scholar]
  42. Xiao, X., Kinter, A., Broder, C. C. & Dimitrov, D. S. ( 2000; ). Interactions of CCR5 and CXCR4 with CD4 and gp120 in human blood monocyte-derived dendritic cells. Exp Mol Pathol 68, 133–138.[CrossRef]
    [Google Scholar]
  43. Yamamoto, N., Okada, M., Koyanagi, Y., Kannagi, M. & Hinuma, Y. ( 1982; ). Transformation of human leukocytes by cocultivation with an adult T cell leukemia virus producer cell line. Science 217, 737–739.[CrossRef]
    [Google Scholar]
  44. Zimmerman, P. A., Buckler-White, A., Alkhatib, G., Spalding, T., Kubofcik, J., Combadiere, C., Weissman, D., Cohen, O., Rubbert, A. & other authors ( 1997; ). Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med 3, 23–36.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/003624-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/003624-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error