1887

Abstract

Engineered RNAs carrying substitutions in the integrin receptor-binding Arg-Gly-Asp (RGD) region of foot-and-mouth disease virus (FMDV) were constructed (aa 141–147 of VP1 capsid protein) and their infectivity was assayed in cultured cells and suckling mice. The effect of these changes was studied in the capsid proteins of two FMDVs, C-S8c1, which enters cells through integrins, and 213hs, a derivative highly adapted to cell culture whose ability to infect cells using the glycosaminoglycan heparan sulfate (HS) as receptor, acquired by multiple passage on BHK-21 cells, has been abolished. The capsid sequence context determined infectivity in cultured cells and directed the selection of additional replacements in structural proteins. Interestingly, a viral population derived from a C-S8c1/L144A mutant, carrying only three substitutions in the capsid, was able to expand tropism to wild-type (wt) and mutant (mt) glycosaminoglycan-deficient CHO cells. In contrast, the 213hs capsid tolerated all substitutions analysed with no additional mutations, and the viruses recovered maintained the ability of the 213hs parental virus to infect wt and mt CHO cells. Viruses derived from C-S8c1 with atypical RGD regions were virulent and transmissible for mice with no other changes in the capsid. Substitution of Asp143 for Ala in the C-S8c1 capsid eliminated infectivity in cultured cells and mice. Co-inoculation with a neutralizing monoclonal antibody directed against the type C FMDV RGD region abolished infectivity of C-S8c1 virus on suckling mice, suggesting that FMDV can infect mice using integrins. Sequence requirements imposed for viral entry and are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/003194-0
2008-10-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/10/2531.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/003194-0&mimeType=html&fmt=ahah

References

  1. Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D. & Brown, F. ( 1989; ). The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature 337, 709–716.[CrossRef]
    [Google Scholar]
  2. Baranowski, E., Sevilla, N., Verdaguer, N., Ruiz-Jarabo, C. M., Beck, E. & Domingo, E. ( 1998; ). Multiple virulence determinants of foot-and-mouth disease virus in cell culture. J Virol 72, 6362–6372.
    [Google Scholar]
  3. Baranowski, E., Ruiz-Jarabo, C. M., Sevilla, N., Andreu, D., Beck, E. & Domingo, E. ( 2000; ). Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J Virol 74, 1641–1647.[CrossRef]
    [Google Scholar]
  4. Baranowski, E., Ruiz-Jarabo, C. M., Lim, F. & Domingo, E. ( 2001; ). Foot-and-mouth disease virus lacking the VP1 G-H loop: the mutant spectrum uncovers interactions among antigenic sites for fitness gain. Virology 288, 192–202.[CrossRef]
    [Google Scholar]
  5. Baranowski, E., Molina, N., Núñez, J. I., Sobrino, F. & Sáiz, M. ( 2003; ). Recovery of infectious foot-and-mouth disease virus from suckling mice after direct inoculation with in vitro-transcribed RNA. J Virol 77, 11290–11295.[CrossRef]
    [Google Scholar]
  6. Berinstein, A., Roivainen, M., Hovi, T., Mason, P. W. & Baxt, B. ( 1995; ). Antibodies to the vitronectin receptor (integrin α v β 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J Virol 69, 2664–2666.
    [Google Scholar]
  7. Brown, J. K., McAleese,, S. M., Thornton,, E. M., Pate,, J. A., Schock,, A., Macrae,, A. I, Scott,, P. R., Miller,, H. R. & Collie, D. D. ( 2006; ). Integrin-α v β 6, a putative receptor for foot-and-mouth disease virus, is constitutively expressed in ruminant airways. J Histochem Cytochem 54, 807–816.[CrossRef]
    [Google Scholar]
  8. Burman, A., Clark, S., Abrescia, N. G., Fry, E. E., Stuart, D. I. & Jackson, T. ( 2006; ). Specificity of the VP1 GH loop of foot-and-mouth disease virus for α v integrins. J Virol 80, 9798–9810.[CrossRef]
    [Google Scholar]
  9. Carrillo, C., Tulman, E. R., Delhon, G., Lu, Z., Carreno, A., Vagnozzi, A., Kutish, G. F. & Rock, D. L. ( 2005; ). Comparative genomics of foot-and-mouth disease virus. J Virol 79, 6487–6504.[CrossRef]
    [Google Scholar]
  10. Dicara, D., Burman, A., Clark, S., Berryman, S., Howard, M. J., Hart, I. R., Marshall, J. F. & Jackson, T. ( 2008; ). Foot-and-mouth disease virus forms a highly stable, EDTA-resistant complex with its principal receptor, integrin α v β 6: implications for infectiousness. J Virol 82, 1537–1546.[CrossRef]
    [Google Scholar]
  11. Domingo, E., Mateu, M. G., Martínez, M. A., Dopazo, J., Moya, A. & Sobrino, F. ( 1990; ). Genetic variability and antigenic diversity of foot-and-mouth disease virus. In Applied Virology Research, Virus Variation & Epidemiology, vol II, pp. 233–266. Edited by E. Kurstak, R. G. Marusyk, S. A. Murphy & M. H. V. van Regenmortel. New York: Plenum Publishing.
  12. Domingo, E., Escarmís, C., Baranowski, E., Ruiz-Jarabo, C. M., Carrillo, E., Núñez, J. I. & Sobrino, F. ( 2003; ). Evolution of foot-and-mouth disease virus. Virus Res 91, 47–63.[CrossRef]
    [Google Scholar]
  13. Duque, H. & Baxt, B. ( 2003; ). Foot-and-mouth disease virus receptors: comparison of bovine α v integrin utilization by type A and O viruses. J Virol 77, 2500–2511.[CrossRef]
    [Google Scholar]
  14. Duque, H., LaRocco, M., Golde, W. T. & Baxt, B. ( 2004; ). Interactions of foot-and-mouth disease virus with soluble bovine α v β 3 and α v β 6 integrins. J Virol 78, 9773–9781.[CrossRef]
    [Google Scholar]
  15. Escarmís, C., Dávila, M., Charpentier, N., Bracho, A., Moya, A. & Domingo, E. ( 1996; ). Genetic lesions associated with Muller's ratchet in an RNA virus. J Mol Biol 264, 255–267.[CrossRef]
    [Google Scholar]
  16. Fernández, F. M., Borca, M. V., Sadir, A. M., Fondevila, N., Mayo, J. & Schudel, A. A. ( 1986; ). Foot-and-mouth disease virus (FMDV) experimental infection: susceptibility and immune response of adult mice. Vet Microbiol 12, 15–24.[CrossRef]
    [Google Scholar]
  17. Fry, E. E., Stuart, D. I. & Rowlands, D. J. ( 2005; ). The structure of foot-and-mouth disease virus. Curr Top Microbiol Immunol 288, 71–101.
    [Google Scholar]
  18. Huang, X. Z., Wu, J. F., Cass, D., Erle, D. J., Corry, D., Young, S. G., Farese, R. V., Jr & Sheppard, D. ( 1996; ). Inactivation of the integrin β 6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J Cell Biol 133, 921–928.[CrossRef]
    [Google Scholar]
  19. Jackson, T., Ellard, F. M., Ghazaleh, R. A., Brookes, S. M., Blakemore, W. E., Corteyn, A. H., Stuart, D. I., Newman, J. W. & King, A. M. ( 1996; ). Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J Virol 70, 5282–5287.
    [Google Scholar]
  20. Jackson, T., Sharma, A., Ghazaleh, R. A., Blakemore, W. E., Ellard, F. M., Simmons, D. L., Newman, J. W., Stuart, D. I. & King, A. M. ( 1997; ). Arginine-glycine-aspartic acid-specific binding by foot-and-mouth disease viruses to the purified integrin α v β 3 in vitro. J Virol 71, 8357–8361.
    [Google Scholar]
  21. Jackson, T., Blakemore, W., Newman, J. W., Knowles, N. J., Mould, A. P., Humphries, M. J. & King, A. M. ( 2000a; ). Foot-and-mouth disease virus is a ligand for the high-affinity binding conformation of integrin α 5 β 1: influence of the leucine residue within the RGDL motif on selectivity of integrin binding. J Gen Virol 81, 1383–1391.
    [Google Scholar]
  22. Jackson, T., Sheppard, D., Denyer, M., Blakemore, W. & King, A. M. ( 2000b; ). The epithelial integrin α v β 6 is a receptor for foot-and-mouth disease virus. J Virol 74, 4949–4956.[CrossRef]
    [Google Scholar]
  23. Jackson, T., Mould, A. P., Sheppard, D. & King, A. M. ( 2002; ). Integrin α v β 1 is a receptor for foot-and-mouth disease virus. J Virol 76, 935–941.[CrossRef]
    [Google Scholar]
  24. Jackson, T., King, A. M., Stuart, D. I. & Fry, E. ( 2003; ). Structure and receptor binding. Virus Res 91, 33–46.[CrossRef]
    [Google Scholar]
  25. Jackson, T., Clark, S., Berryman, S., Burman, A., Cambier, S., Mu, D., Nishimura, S. & King, A. M. ( 2004; ). Integrin α v β 8 functions as a receptor for foot-and-mouth disease virus: role of the β-chain cytodomain in integrin-mediated infection. J Virol 78, 4533–4540.[CrossRef]
    [Google Scholar]
  26. Leippert, M., Beck, E., Weiland, F. & Pfaff, E. ( 1997; ). Point mutations within the βG-βH loop of foot-and-mouth disease virus O1K affect virus attachment to target cells. J Virol 71, 1046–1051.
    [Google Scholar]
  27. Logan, D., Abu-Ghazaleh, R., Blakemore, W., Curry, S., Jackson, T., King, A., Lea, S., Lewis, R., Newman, J. & other authors ( 1993; ). Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 362, 566–568.[CrossRef]
    [Google Scholar]
  28. Luo, B. H., Carman, C. V. & Springer, T. A. ( 2007; ). Structural basis of integrin regulation and signaling. Annu Rev Immunol 25, 619–647.[CrossRef]
    [Google Scholar]
  29. Martínez, M. A., Verdaguer, N., Mateu, M. G. & Domingo, E. ( 1997; ). Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proc Natl Acad Sci U S A 94, 6798–6802.[CrossRef]
    [Google Scholar]
  30. Mason, P. W., Rieder, E. & Baxt, B. ( 1994; ). RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci U S A 91, 1932–1936.[CrossRef]
    [Google Scholar]
  31. Mason, P. W., Grubman, M. J. & Baxt, B. ( 2003; ). Molecular basis of pathogenesis of FMDV. Virus Res 91, 9–32.[CrossRef]
    [Google Scholar]
  32. Mateo, R., Díaz, A., Baranowski, E. & Mateu, M. G. ( 2003; ). Complete alanine scanning of intersubunit interfaces in a foot-and-mouth disease virus capsid reveals critical contributions of many side chains to particle stability and viral function. J Biol Chem 278, 41019–41027.[CrossRef]
    [Google Scholar]
  33. Mateu, M. G. & Verdaguer, N. ( 2004; ). Functional and structural aspects of the interaction of foot-and-mouth disease virus with antibodies. In Foot-and-Mouth Disease, Current Perspectives, pp. 223–260. Edited by F. Sobrino & E. Domingo. Norfolk, UK: Horizon Bioscience.
  34. Mateu, M. G., Rocha, E., Vicente, O., Vayreda, F., Navalpotro, C., Andreu, D., Pedroso, E., Giralt, E., Enjuanes, L. & Domingo, E. ( 1987; ). Reactivity with monoclonal antibodies of viruses from an episode of foot-and-mouth disease. Virus Res 8, 261–274.[CrossRef]
    [Google Scholar]
  35. Mateu, M. G., Martínez, M. A., Capucci, L., Andreu, D., Giralt, E., Sobrino, F., Brocchi, E. & Domingo, E. ( 1990; ). A single amino acid substitution affects multiple overlapping epitopes in the major antigenic site of foot-and-mouth disease virus of serotype C. J Gen Virol 71, 629–637.[CrossRef]
    [Google Scholar]
  36. Mateu, M. G., Valero, M. L., Andreu, D. & Domingo, E. ( 1996; ). Systematic replacement of amino acid residues within an Arg-Gly-Asp-containing loop of foot-and-mouth disease virus and effect on cell recognition. J Biol Chem 271, 12814–12819.[CrossRef]
    [Google Scholar]
  37. McKenna, T. S., Lubroth, J., Rieder, E., Baxt, B. & Mason, P. W. ( 1995; ). Receptor binding site-deleted foot-and-mouth disease (FMD) virus protects cattle from FMD. J Virol 69, 5787–5790.
    [Google Scholar]
  38. Monaghan, P., Gold, S., Simpson, J., Zhang, Z., Weinreb, P. H., Violette, S. M., Alexandersen, S. & Jackson, T. ( 2005; ). The α v β 6 integrin receptor for Foot-and-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle. J Gen Virol 86, 2769–2780.[CrossRef]
    [Google Scholar]
  39. Neff, S., Sa-Carvalho, D., Rieder, E., Mason, P. W., Blystone, S. D., Brown, E. J. & Baxt, B. ( 1998; ). Foot-and-mouth disease virus virulent for cattle utilizes the integrin α v β 3 as its receptor. J Virol 72, 3587–3594.
    [Google Scholar]
  40. Neff, S., Mason, P. W. & Baxt, B. ( 2000; ). High-efficiency utilization of the bovine integrin α v β 3 as a receptor for foot-and-mouth disease virus is dependent on the bovine β 3 subunit. J Virol 74, 7298–7306.[CrossRef]
    [Google Scholar]
  41. Núñez, J. I., Baranowski, E., Molina, N., Ruiz-Jarabo, C. M., Sánchez, C., Domingo, E. & Sobrino, F. ( 2001; ). A single amino acid substitution in nonstructural protein 3A can mediate adaptation of foot-and-mouth disease virus to the guinea pig. J Virol 75, 3977–3983.[CrossRef]
    [Google Scholar]
  42. Núñez, J. I., Molina, N., Baranowski, E., Domingo, E., Clark, S., Burman, A., Berryman, S., Jackson, T. & Sobrino, F. ( 2007; ). Guinea pig-adapted foot-and-mouth disease virus with altered receptor recognition can productively infect a natural host. J Virol 81, 8497–8506.[CrossRef]
    [Google Scholar]
  43. Parry, N., Fox, G., Rowlands, D., Brown, F., Fry, E., Acharya, R., Logan, D. & Stuart, D. ( 1990; ). Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus. Nature 347, 569–572.[CrossRef]
    [Google Scholar]
  44. Pereira, H. G. ( 1981; ). Foot-and-mouth disease virus. In Virus Diseases of Food Animals, vol.2, pp. 333–363. Edited by E. P. G. Gibbs. New York: Academic Press.
  45. Rieder, E., Berinstein, A., Baxt, B., Kang, A. & Mason, P. W. ( 1996; ). Propagation of an attenuated virus by design: engineering a novel receptor for a noninfectious foot-and-mouth disease virus. Proc Natl Acad Sci U S A 93, 10428–10433.[CrossRef]
    [Google Scholar]
  46. Rieder, E., Henry, T., Duque, H. & Baxt, B. ( 2005; ). Analysis of a foot-and-mouth disease virus type A24 isolate containing an SGD receptor recognition site in vitro and its pathogenesis in cattle. J Virol 79, 12989–12998.[CrossRef]
    [Google Scholar]
  47. Ruiz-Jarabo, C. M., Sevilla, N., Dávila, M., Gómez-Mariano, G., Baranowski, E. & Domingo, E. ( 1999; ). Antigenic properties and population stability of a foot-and-mouth disease virus with an altered Arg-Gly-Asp receptor-recognition motif. J Gen Virol 80, 1899–1909.
    [Google Scholar]
  48. Ruiz-Jarabo, C. M., Pariente, N., Baranowski, E., Dávila, M., Gómez-Mariano, G. & Domingo, E. ( 2004; ). Expansion of host-cell tropism of foot-and-mouth disease virus despite replication in a constant environment. J Gen Virol 85, 2289–2297.[CrossRef]
    [Google Scholar]
  49. Sa-Carvalho, D., Rieder, E., Baxt, B., Rodarte, R., Tanuri, A. & Mason, P. W. ( 1997; ). Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol 71, 5115–5123.
    [Google Scholar]
  50. Sáiz, M., Gómez, S., Martínez-Salas, E. & Sobrino, F. ( 2001; ). Deletion or substitution of the aphthovirus 3′ NCR abrogates infectivity and virus replication. J Gen Virol 82, 93–101.
    [Google Scholar]
  51. Sáiz, M., Núñez, J. I., Jimenez-Clavero, M. A., Baranowski, E. & Sobrino, F. ( 2002; ). Foot-and-mouth disease virus: biology and prospects for disease control. Microbes Infect 4, 1183–1192.[CrossRef]
    [Google Scholar]
  52. Skinner, H. H. ( 1951; ). Propagation of strains of foot-and-mouth disease virus in unweaned white mice. Proc R Soc Med 44, 1041–1044.
    [Google Scholar]
  53. Sobrino, F., Dávila, M., Ortín, J. & Domingo, E. ( 1983; ). Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology 128, 310–318.[CrossRef]
    [Google Scholar]
  54. Taboga, O., Tami, C., Carrillo, E., Núñez, J. I., Rodríguez, A., Sáiz, J. C., Blanco, E., Valero, M. L., Roig, X. & other authors ( 1997; ). A large-scale evaluation of peptide vaccines against foot-and-mouth disease: lack of solid protection in cattle and isolation of escape mutants. J Virol 71, 2606–2614.
    [Google Scholar]
  55. Tami, C., Taboga, O., Berinstein, A., Núñez, J. I., Palma, E. L., Domingo, E., Sobrino, F. & Carrillo, E. ( 2003; ). Evidence of the coevolution of antigenicity and host cell tropism of foot-and-mouth disease virus in vivo. J Virol 77, 1219–1226.[CrossRef]
    [Google Scholar]
  56. Verdaguer, N., Fita, I., Domingo, E. & Mateu, M. G. ( 1997; ). Efficient neutralization of foot-and-mouth disease virus by monovalent antibody binding. J Virol 71, 9813–9816.
    [Google Scholar]
  57. Zhao, Q., Pacheco, J. M. & Mason, P. W. ( 2003; ). Evaluation of genetically engineered derivatives of a Chinese strain of foot-and-mouth disease virus reveals a novel cell-binding site which functions in cell culture and in animals. J Virol 77, 3269–3280.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/003194-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/003194-0
Loading

Data & Media loading...

vol. , part 10, pp. 2531 - 2539

Primers used for FMDV capsid mutagenesis [PDF](20 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error