1887

Abstract

CD8 cytotoxic T-lymphocyte (CTL) responses have been shown to be important in the control of human and simian immunodeficiency virus infections. Infection of sheep with visna/maedi virus (VISNA), a related lentivirus, induces specific CD8 CTL , but the specific viral proteins recognized are not known. To determine which VISNA antigens were recognized by sheep CTL, we used recombinant vaccinia viruses expressing the different genes of VISNA: in six sheep (Finnish Landrace×Dorset crosses, Friesland and Lleyn breeds) all VISNA proteins were recognized except TAT. Two sheep, shown to share major histocompatibility complex (MHC) class I alleles, recognized POL and were used to map the epitope. The gene is 3267 bp long encoding 1088 aa. By using recombinant vaccinia viruses a central portion (nt 1609–2176, aa 537–725) was found to contain the CTL epitope and this was mapped with synthetic peptides to a 25 aa region (aa 612–636). When smaller peptides were used, a cluster of epitopes was detected: at least three epitopes were present, at positions 612–623: DSRYAFEFMIRN; 620–631: MIRNWDEEVIKN; and 625–635: EEVIKNPIQAR. A DNA-prime-modified vaccinia virus Ankara (MVA)-boost strategy was employed to immunize four sheep shown to share MHC class I allele(s) with the sheep above. Specific CTL activity developed in all the immunized sheep within 3 weeks of the final MVA boost although half the sheep showed evidence of specific reactivity after the DNA-prime immunizations. This is the first report, to our knowledge, of induction of CTL by a DNA-prime-boost method in VISNA infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/002634-0
2008-10-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/10/2586.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/002634-0&mimeType=html&fmt=ahah

References

  1. Amara, R. R., Villinger, F., Altman, J. D., Lydy, S. L., O'Neil, S. P., Staprans, S. I., Montefiori, D. C., Xu, Y., Herndon, J. G. & other authors ( 2002; ). Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Vaccine 20, 1949–1955.[CrossRef]
    [Google Scholar]
  2. Babiuk, L. A., Pontarollo, R., Babiuk, S., Loehr, B. & van Drunen Littel-van den Hurk, S. ( 2003; ). Induction of immune responses by DNA vaccines in large animals. Vaccine 21, 649–658.[CrossRef]
    [Google Scholar]
  3. Benito, J. M., Lopez, M. & Soriano, V. ( 2004; ). The role of CD8+ T-cell response in HIV infection. AIDS Rev 6, 79–88.
    [Google Scholar]
  4. Bird, P., Blacklaws, B., Reyburn, H. T., Allen, D., Hopkins, J., Sargan, D. & McConnell, I. ( 1993; ). Early events in immune evasion by the lentivirus maedi–visna occurring within infected lymphoid tissue. J Virol 67, 5187–5197.
    [Google Scholar]
  5. Blacklaws, B. A., Bird, P., Allen, D. & McConnell, I. ( 1994; ). Circulating cytotoxic T lymphocyte precursors in maedi–visna virus-infected sheep. J Gen Virol 75, 1589–1596.[CrossRef]
    [Google Scholar]
  6. Blacklaws, B., Bird, P. & McConnell, I. ( 1995a; ). Early events in infection of lymphoid tissue by a lentivirus, maedi–visna. Trends Microbiol 3, 434–440.[CrossRef]
    [Google Scholar]
  7. Blacklaws, B. A., Bird, P., Allen, D., Roy, D. J., MacLennan, I. C., Hopkins, J., Sargan, D. R. & McConnell, I. ( 1995b; ). Initial lentivirus–host interactions within lymph nodes: a study of maedi–visna virus infection in sheep. J Virol 69, 1400–1407.
    [Google Scholar]
  8. Brodie, S. J., Marcom, K. A., Pearson, L. D., Anderson, B. C., de la Concha-Bermejillo, A., Ellis, J. A. & Demartini, J. C. ( 1992; ). Effects of virus load in the pathogenesis of lentivirus-induced lymphoid interstitial pneumonia. J Infect Dis 166, 531–541.[CrossRef]
    [Google Scholar]
  9. Chakrabarti, S., Brechling, K. & Moss, B. ( 1985; ). Vaccinia virus expression vector: coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol 5, 3403–3409.
    [Google Scholar]
  10. Chaplin, P. J., De Rose, R., Boyle, J. S., McWaters, P., Kelly, J., Tennent, J. M., Lew, A. M. & Scheerlinck, J. P. ( 1999; ). Targeting improves the efficacy of a DNA vaccine against Corynebacterium pseudotuberculosis in sheep. Infect Immun 67, 6434–6438.
    [Google Scholar]
  11. Chisari, F. V. & Ferrari, C. ( 1995; ). Hepatitis B virus immunopathology. Springer Semin Immunopathol 17, 261–281.
    [Google Scholar]
  12. Chung, C., Mealey, R. H. & McGuire, T. C. ( 2004; ). CTL from EIAV carrier horses with diverse MHC class I alleles recognize epitope clusters in Gag matrix and capsid proteins. Virology 327, 144–154.[CrossRef]
    [Google Scholar]
  13. Chung, C., Mealey, R. H. & McGuire, T. C. ( 2005; ). Evaluation of high functional avidity CTL to Gag epitope clusters in EIAV carrier horses. Virology 342, 228–239.[CrossRef]
    [Google Scholar]
  14. De Rose, R., Tennent, J., McWaters, P., Chaplin, P. J., Wood, P. R., Kimpton, W., Cahill, R. & Scheerlinck, J. P. ( 2002; ). Efficacy of DNA vaccination by different routes of immunisation in sheep. Vet Immunol Immunopathol 90, 55–63.[CrossRef]
    [Google Scholar]
  15. Eriksson, K., McInnes, E., Ryan, S., Tonks, P., McConnell, I. & Blacklaws, B. ( 1999; ). In vivo depletion of CD8+ cells does not affect primary maedi visna virus infection in sheep. Vet Immunol Immunopathol 70, 173–187.[CrossRef]
    [Google Scholar]
  16. Flynn, J. N., Keating, P., Hosie, M. J., Mackett, M., Stephens, E. B., Beatty, J. A., Neil, J. C. & Jarrett, O. ( 1996; ). Env-specific CTL predominate in cats protected from feline immunodeficiency virus infection by vaccination. J Immunol 157, 3658–3665.
    [Google Scholar]
  17. Gaddum, R. M., Willis, A. C. & Ellis, S. A. ( 1996; ). Peptide motifs from three cattle MHC (BoLA) class I antigens. Immunogenetics 43, 238–239.
    [Google Scholar]
  18. Gendelman, H. E., Narayan, O., Molineaux, S., Clements, J. E. & Ghotbi, Z. ( 1985; ). Slow, persistent replication of lentiviruses: role of tissue macrophages and macrophage precursors in bone marrow. Proc Natl Acad Sci U S A 82, 7086–7090.[CrossRef]
    [Google Scholar]
  19. Gendelman, H. E., Narayan, O., Kennedy-Stoskopf, S., Kennedy, P. G., Ghotbi, Z., Clements, J. E., Stanley, J. & Pezeshkpour, G. ( 1986; ). Tropism of sheep lentiviruses for monocytes: susceptibility to infection and virus gene expression increase during maturation of monocytes to macrophages. J Virol 58, 67–74.
    [Google Scholar]
  20. Gilbert, S. C., Moorthy, V. S., Andrews, L., Pathan, A. A., McConkey, S. J., Vuola, J. M., Keating, S. M., Berthoud, T., Webster, D. & other authors ( 2006; ). Synergistic DNA-MVA prime–boost vaccination regimes for malaria and tuberculosis. Vaccine 24, 4554–4561.[CrossRef]
    [Google Scholar]
  21. Gorrell, M. D., Brandon, M. R., Sheffer, D., Adams, R. J. & Narayan, O. ( 1992; ). Ovine lentivirus is macrophagetropic and does not replicate productively in T lymphocytes. J Virol 66, 2679–2688.
    [Google Scholar]
  22. Graham, S. P., Pellé, R., Yamage, M., Mwangi, D. M., Honda, Y., Mwakubambanya, R. S., de Villiers, E. P., Abuya, E., Awino, E. & other authors ( 2008; ). Characterization of the fine specificity of bovine CD8 T-cell responses to defined antigens from the protozoan parasite Theileria parva. Infect Immun 76, 685–694.[CrossRef]
    [Google Scholar]
  23. Griffin, D. E., Narayan, O. & Adams, R. J. ( 1978; ). Early immune responses in visna, a slow viral disease of sheep. J Infect Dis 138, 340–350.[CrossRef]
    [Google Scholar]
  24. Gurunathan, S., Klinman, D. M. & Seder, R. A. ( 2000; ). DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18, 927–974.[CrossRef]
    [Google Scholar]
  25. Harty, J. T., Tvinnereim, A. R. & White, D. W. ( 2000; ). CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol 18, 275–308.[CrossRef]
    [Google Scholar]
  26. Heeney, J. L. & Plotkin, S. A. ( 2006; ). Immunological correlates of protection from HIV infection and disease. Nat Immunol 7, 1281–1284.[CrossRef]
    [Google Scholar]
  27. Hislop, A. D., Good, M. F., Mateo, L., Gardner, J., Gatei, M. H., Daniel, R. C., Meyers, B. V., Lavin, M. F. & Suhrbier, A. ( 1998; ). Vaccine-induced cytotoxic T lymphocytes protect against retroviral challenge. Nat Med 4, 1193–1196.[CrossRef]
    [Google Scholar]
  28. Hopkins, J. & Dutia, B. M. ( 1990; ). Monoclonal antibodies to the sheep analogues of human CD45 (leucocyte common antigen), MHC class I and CD5. Differential expression after lymphocyte activation in vivo. Vet Immunol Immunopathol 24, 331–346.[CrossRef]
    [Google Scholar]
  29. Hosie, M. J., Flynn, J. N., Rigby, M. A., Cannon, C., Dunsford, T., Mackay, N. A., Argyle, D., Willett, B. J., Miyazawa, T. & other authors ( 1998; ). DNA vaccination affords significant protection against feline immunodeficiency virus infection without inducing detectable antiviral antibodies. J Virol 72, 7310–7319.
    [Google Scholar]
  30. Janardhana, V., Andrew, M. E., Lobato, Z. I. & Coupar, B. E. ( 1999; ). The ovine cytotoxic T lymphocyte responses to bluetongue virus. Res Vet Sci 67, 213–221.[CrossRef]
    [Google Scholar]
  31. Kanaya, S., Kohara, A., Miura, Y., Sekiguchi, A., Iwai, S., Inoue, H., Ohtsuka, E. & Ikehara, M. ( 1990; ). Identification of the amino acid residues involved in an active site of Escherichia coli ribonuclease H by site-directed mutagenesis. J Biol Chem 265, 4615–4621.
    [Google Scholar]
  32. Larsen, H. J., Hyllseth, B. & Krogsrud, J. ( 1982; ). Experimental maedi virus infection in sheep: early cellular and humoral immune response following parenteral inoculation. Am J Vet Res 43, 379–383.
    [Google Scholar]
  33. Lee, W. C., McConnell, I. & Blacklaws, B. A. ( 1994; ). Cytotoxic activity against maedi-visna virus-infected macrophages. J Virol 68, 8331–8338.
    [Google Scholar]
  34. Lucchiari-Hartz, M., Lindo, V., Hitziger, N., Gaedicke, S., Saveanu, L., van Endert, P. M., Greer, F., Eichmann, K. & Niedermann, G. ( 2003; ). Differential proteasomal processing of hydrophobic and hydrophilic protein regions: contribution to cytotoxic T lymphocyte epitope clustering in HIV-1-Nef. Proc Natl Acad Sci U S A 100, 7755–7760.[CrossRef]
    [Google Scholar]
  35. Madalinski, W., Bankovski, A. & Korbecki, M. ( 1977; ). Purification of vaccinia virus by zonal centrifugation and analysis of viral protein composition. Acta Virol 21, 104–108.
    [Google Scholar]
  36. Maecker, H. T. & Maino, V. C. ( 2003; ). T cell immunity to HIV: defining parameters of protection. Curr HIV Res 1, 249–259.[CrossRef]
    [Google Scholar]
  37. Mateo, L., Gardner, J. & Suhrbier, A. ( 2001; ). Delayed emergence of bovine leukemia virus after vaccination with a protective cytotoxic T cell-based vaccine. AIDS Res Hum Retroviruses 17, 1447–1453.[CrossRef]
    [Google Scholar]
  38. McConkey, S. J., Reece, W. H., Moorthy, V. S., Webster, D., Dunachie, S., Butcher, G., Vuola, J. M., Blanchard, T. J., Gothard, P. & other authors ( 2003; ). Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med 9, 729–735.[CrossRef]
    [Google Scholar]
  39. McDermott, A. B., O'Connor, D. H., Fuenger, S., Piaskowski, S., Martin, S., Loffredo, J., Reynolds, M., Reed, J., Furlott, J. & other authors ( 2005; ). Cytotoxic T-lymphocyte escape does not always explain the transient control of simian immunodeficiency virus SIVmac239 viremia in Adenovirus-boosted and DNA-primed Mamu-A*01-positive Rhesus macaques. J Virol 79, 15556–15566.[CrossRef]
    [Google Scholar]
  40. McGuire, T. C., Fraser, D. G. & Mealey, R. H. ( 2004; ). Cytotoxic T lymphocytes in protection against equine infectious anemia virus. Anim Health Res Rev 5, 271–276.[CrossRef]
    [Google Scholar]
  41. McMichael, A. J. & Rowland-Jones, S. L. ( 2001; ). Cellular immune responses to HIV. Nature 410, 980–987.[CrossRef]
    [Google Scholar]
  42. McNeilly, T. N., Tennant, P., Luján, L., Pérez, M. & Harkiss, G. D. ( 2007; ). Differential infection efficiencies of peripheral lung and tracheal tissues in sheep infected with visna/maedi virus via the respiratory tract. J Gen Virol 88, 670–679.[CrossRef]
    [Google Scholar]
  43. Narayan, O. & Clements, J. E. ( 1989; ). Biology and pathogenesis of lentiviruses. J Gen Virol 70, 1617–1639.[CrossRef]
    [Google Scholar]
  44. Pétursson, G., Andrésdóttir, V., Andrésson, O., Torsteinsdóttir, S., Georgsson, G. & Pálsson, P. A. ( 1991; ). Human and ovine lentiviral infections compared. Comp Immunol Microbiol Infect Dis 14, 277–287.[CrossRef]
    [Google Scholar]
  45. Pu, R., Tellier, M. C. & Yamamoto, J. K. ( 1997; ). Mechanism(s) of FIV vaccine protection. Leukemia 11 (Suppl. 3), 98–101.
    [Google Scholar]
  46. Rehermann, B. ( 2000; ). Interaction between the hepatitis C virus and the immune system. Semin Liver Dis 20, 127–141.[CrossRef]
    [Google Scholar]
  47. Reyburn, H. T., Roy, D. J., Blacklaws, B. A., Sargan, D. R., Watt, N. J. & McConnell, I. ( 1992; ). Characteristics of the T cell-mediated immune response to maedi-visna virus. Virology 191, 1009–1012.[CrossRef]
    [Google Scholar]
  48. Ryan, S., Tiley, L., McConnell, I. & Blacklaws, B. ( 2000; ). Infection of dendritic cells by the maedi–visna lentivirus. J Virol 74, 10096–10103.[CrossRef]
    [Google Scholar]
  49. Sánchez, A. B., Rodríguez, D., Garzón, A., Amorena, B., Esteban, M. & Rodríguez, J. R. ( 2002; ). Visna/maedi virus Env protein expressed by a vaccinia virus recombinant induces cell-to-cell fusion in cells of different origins in the apparent absence of Env cleavage: role of glycosylation and of proteoglycans. Arch Virol 147, 2377–2392.[CrossRef]
    [Google Scholar]
  50. Sargan, D. R., Bennet, I. D., Cousens, C., Roy, D. J., Blacklaws, B. A., Dalziel, R. G., Watt, N. J. & McConnell, I. ( 1991; ). Nucleotide sequence of EV1, a British isolate of maedi–visna virus. J Gen Virol 72, 1893–1903.[CrossRef]
    [Google Scholar]
  51. Scheerlinck, J. P., Karlis, J., Tjelle, T. E., Presidente, P. J., Mathiesen, I. & Newton, S. E. ( 2004; ). In vivo electroporation improves immune responses to DNA vaccination in sheep. Vaccine 22, 1820–1825.[CrossRef]
    [Google Scholar]
  52. Sihvonen, L. ( 1981; ). Early immune responses in experimental maedi. Res Vet Sci 30, 217–222.
    [Google Scholar]
  53. Sinnathamby, G., Seth, S., Nayak, R. & Shaila, M. S. ( 2004; ). Cytotoxic T cell epitope in cattle from the attachment glycoproteins of rinderpest and peste des petits ruminants viruses. Viral Immunol 17, 401–410.[CrossRef]
    [Google Scholar]
  54. Torsteinsdóttir, S., Georgsson, G., Gísladóttir, E., Rafnar, B., Pálsson, P. A. & Pétursson, G. ( 1992; ). Pathogenesis of central nervous system lesions in visna: cell-mediated immunity and lymphocyte subsets in blood, brain and cerebrospinal fluid. J Neuroimmunol 41, 149–158.[CrossRef]
    [Google Scholar]
  55. Toye, P. G., MacHugh, N. D., Bensaid, A. M., Alberti, S., Teale, A. J. & Morrison, W. I. ( 1990; ). Transfection into mouse L cells of genes encoding two serologically and functionally distinct bovine class I MHC molecules from a MHC-homozygous animal: evidence for a second class I locus in cattle. Immunology 70, 20–26.A
    [Google Scholar]
  56. Villet, S., Bouzar, B. A., Morin, T., Verdier, G., Legras, C. & Chebloune, Y. ( 2003; ). Maedi–visna virus and caprine arthritis encephalitis virus genomes encode a Vpr-like but no Tat protein. J Virol 77, 9632–9638.[CrossRef]
    [Google Scholar]
  57. Walker, B. D. & Korber, B. T. ( 2001; ). Immune control of HIV: the obstacles of HLA and viral diversity. Nat Immunol 2, 473–475.[CrossRef]
    [Google Scholar]
  58. Wang, X., Wang, J. P., Rao, X. M., Price, J. E., Zhou, H. S. & Lachman, L. B. ( 2005; ). Prime–boost vaccination with plasmid and adenovirus gene vaccines control HER2/neu + metastatic breast cancer in mice. Breast Cancer Res 7, R580–R588.[CrossRef]
    [Google Scholar]
  59. Watkins, C., Hopkins, J. & Harkiss, G. ( 2005; ). Reporter gene expression in dendritic cells after gene gun administration of plasmid DNA. Vaccine 23, 4247–4256.[CrossRef]
    [Google Scholar]
  60. Wong, P. & Pamer, E. G. ( 2003; ). CD8 T cell responses to infectious pathogens. Annu Rev Immunol 21, 29–70.[CrossRef]
    [Google Scholar]
  61. Wong, D. K., Dudley, D. D., Dohrenwend, P. B., Lauer, G. M., Chung, R. T., Thomas, D. L. & Walker, B. D. ( 2001; ). Detection of diverse hepatitis C virus (HCV)-specific cytotoxic T lymphocytes in peripheral blood of infected persons by screening for responses to all translated proteins of HCV. J Virol 75, 1229–1235.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/002634-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/002634-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error