Relevance of viral context and diversity of antigen-processing routes for respiratory syncytial virus cytotoxic T-lymphocyte epitopes Free

Abstract

Antigen processing of respiratory syncytial virus (RSV) fusion (F) protein epitopes F85–93 and F249–258 presented to cytotoxic T-lymphocytes (CTLs) by the murine major histocompatibility complex (MHC) class I molecule K was studied in different viral contexts. Epitope F85–93 was presented through a classical endogenous pathway dependent on the transporters associated with antigen processing (TAP) when the F protein was expressed from either RSV or recombinant vaccinia virus (rVACV). At least in cells infected with rVACV encoding either natural or cytosolic F protein, the proteasome was required for epitope processing. In cells infected with rVACV encoding the natural F protein, an additional endogenous TAP-independent presentation pathway was found for F85–93. In contrast, epitope F249–258 was presented only through TAP-independent pathways, but presentation was brefeldin A sensitive when the F protein was expressed from RSV, or mostly resistant when expressed from rVACV. Therefore, antigen-processing pathways with different mechanisms and subcellular localizations are accessible to individual epitopes presented by the same MHC class I molecule and processed from the same protein but in different viral contexts. This underscores both the diversity of pathways available and the influence of virus infection on presentation of epitopes to CTLs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/002485-0
2008-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/9/2194.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/002485-0&mimeType=html&fmt=ahah

References

  1. Bacik I., Cox J. H., Anderson R., Yewdell J. W., Bennink J. R. 1994; TAP (transporter associated with antigen processing)-independent presentation of endogenously synthesized peptides is enhanced by endoplasmic reticulum insertion sequences located at the amino- but not carboxyl-terminus of the peptide. J Immunol 152:381–387
    [Google Scholar]
  2. Bembridge G. P., López J. A., Cook R., Melero J. A., Taylor G. 1998; Recombinant vaccinia virus coexpressing the F protein of respiratory syncytial virus (RSV) and interleukin-4 (IL-4) does not inhibit the development of RSV-specific memory cytotoxic T lymphocytes, whereas priming is diminished in the presence of high levels of IL-2 or gamma interferon. J Virol 72:4080–4087
    [Google Scholar]
  3. Bembridge G. P., López J. A., Bustos R., Melero J. A., Cook R., Mason H., Taylor G. 1999; Priming with a secreted form of the fusion protein of respiratory syncytial virus (RSV) promotes interleukin-4 (IL-4) and IL-5 production but not pulmonary eosinophilia following RSV challenge. J Virol 73:10086–10094
    [Google Scholar]
  4. Bembridge G. P., Rodríguez N., García-Beato R., Nicolson C., Melero J. A., Taylor G. 2000; DNA encoding the attachment (G) or fusion (F) protein of respiratory syncytial virus induces protection in the absence of pulmonary inflammation. J Gen Virol 81:2519–2523
    [Google Scholar]
  5. Cannon M. J., Openshaw P. J., Askonas B. A. 1988; Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. J Exp Med 168:1163–1168 [CrossRef]
    [Google Scholar]
  6. Chang J., Srikiatkhachorn A., Braciale T. J. 2001; Visualization and characterization of respiratory syncytial virus F-specific CD8+ T cells during experimental virus infection. J Immunol 167:4254–4260 [CrossRef]
    [Google Scholar]
  7. Chen W., Antón L. C., Bennink J. R., Yewdell J. W. 2000; Dissecting the multifactorial causes of immunodominance in class I-restricted T cell responses to viruses. Immunity 12:83–93 [CrossRef]
    [Google Scholar]
  8. Collins P. L., Chanock R. M., Murphy B. R. 2001; Respiratory syncytial virus. In Fields Virology , 4th edn. pp 1443–1485Edited by Knipe D. M., Howley. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  9. Craiu A., Gaczynska M., Akopian T., Gramm C. F., Fenteany G., Goldberg A. L., Rock K. L. 1997; Lactacystin and clasto-lactacystin β -lactone modify multiple proteasome β -subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation. J Biol Chem 272:13437–13445 [CrossRef]
    [Google Scholar]
  10. Del Val M., López D. 2002; Multiple proteases process viral antigens for presentation by MHC class I molecules to CD8+ T lymphocytes. Mol Immunol 39:235–247 [CrossRef]
    [Google Scholar]
  11. Eisenlohr L. C., Bacik I., Bennink J. R., Bernstein K., Yewdell J. W. 1992a; Expression of a membrane protease enhances presentation of endogenous antigens to MHC class I-restricted T lymphocytes. Cell 71:963–972 [CrossRef]
    [Google Scholar]
  12. Eisenlohr L. C., Yewdell J. W., Bennink J. R. 1992b; Flanking sequences influence the presentation of an endogenously synthesized peptide to cytotoxic T lymphocytes. J Exp Med 175:481–487 [CrossRef]
    [Google Scholar]
  13. Elliott T., Willis A., Cerundolo V., Townsend A. 1995; Processing of major histocompatibility class I-restricted antigens in the endoplasmic reticulum. J Exp Med 181:1481–1491 [CrossRef]
    [Google Scholar]
  14. García-Barreno B., Jorcano J. L., Aukenbauer T., López-Galíndez C., Melero J. A. 1988; Participation of cytoskeletal intermediate filaments in the infectious cycle of human respiratory syncytial virus (RSV).. Virus Res 9:307–321 [CrossRef]
    [Google Scholar]
  15. Gil-Torregrosa B. C., Castaño A. R., Del Val M. 1998; Major histocompatibility complex class I viral antigen processing in the secretory pathway defined by the trans -Golgi network protease furin. J Exp Med 188:1105–1116 [CrossRef]
    [Google Scholar]
  16. Gil-Torregrosa B. C., Castaño A. R., López D., Del Val M. 2000; Generation of MHC class I peptide antigens by protein processing in the secretory route by furin. Traffic 1:641–651 [CrossRef]
    [Google Scholar]
  17. González-Reyes L., Ruiz-Argüello M. B., García-Barreno B., Calder L., López J. A., Albar J. P., Skehel J. J., Wiley D. C., Melero J. A. 2001; Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proc Natl Acad Sci U S A 98:9859–9864 [CrossRef]
    [Google Scholar]
  18. Graham B. S., Bunton L. A., Wright P. F., Karzon D. T. 1991; Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J Clin Invest 88:1026–1033 [CrossRef]
    [Google Scholar]
  19. Grommé M., Uytdehaag F. G. C. M., Janssen H., Calafat J., van Binnendijk R. S., Kenter M. J. H., Tulp A., Verwoerd D., Neefjes J. 1999; Recycling MHC class I molecules and endosomal peptide loading. Proc Natl Acad Sci U S A 96:10326–10331 [CrossRef]
    [Google Scholar]
  20. Guil S., Rodríguez-Castro M., Aguilar F., Villasevil E. M., Antón L. C., Del Val M. 2006; Need for tripeptidyl-peptidase II in major histocompatibility complex class I viral antigen processing when proteasomes are detrimental. J Biol Chem 281:39925–39934 [CrossRef]
    [Google Scholar]
  21. Hammond S. A., Bollinger R. C., Tobery T. W., Siliciano R. F. 1993; Transporter-independent processing of HIV-1 envelope protein for recognition by CD8+ T cells. Nature 364:158–161 [CrossRef]
    [Google Scholar]
  22. Hammond S. A., Johnson R. P., Kalams S. A., Walker B. D., Takiguchi M., Safrit J. T., Koup R. A., Siliciano R. F. 1995; An epitope-selective, transporter associated with antigen presentation (TAP)-1/2-independent pathway and a more general TAP-1/2-dependent antigen-processing pathway allow recognition of the HIV-1 envelope glycoprotein by CD8+ CTL. J Immunol 154:6140–6156
    [Google Scholar]
  23. Henderson R. A., Michel H., Sakaguchi K., Shabanowitz J., Appella E., Hunt D. F., Engelhard V. H. 1992; HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255:1264–1266 [CrossRef]
    [Google Scholar]
  24. Johnstone C., Del Val M. 2007; Traffic of proteins and peptides across membranes for immunosurveillance by CD8+ T lymphocytes: a topological challenge. Traffic 8:1486–1494 [CrossRef]
    [Google Scholar]
  25. Johnstone C., de León P., Medina F., Melero J. A., García-Barreno B., Del Val M. 2004; Shifting immunodominance pattern of two cytotoxic T-lymphocyte epitopes in the F glycoprotein of the Long strain of respiratory syncytial virus. J Gen Virol 85:3229–3238 [CrossRef]
    [Google Scholar]
  26. Lautscham G., Mayrhofer S., Taylor G., Haigh T., Leese A., Rickinson A., Blake N. 2001; Processing of a multiple membrane spanning Epstein–Barr virus protein for CD8+ T cell recognition reveals a proteasome-dependent, transporter associated with antigen processing-independent pathway. J Exp Med 194:1053–1068 [CrossRef]
    [Google Scholar]
  27. Li X., Sambhara S., Li C. X., Ewasyshyn M., Parrington M., Caterini J., James O., Cates G., Du R. P., Klein M. 1998; Protection against respiratory syncytial virus infection by DNA immunization. J Exp Med 188:681–688 [CrossRef]
    [Google Scholar]
  28. Lippincott-Schwartz J., Donaldson J. G., Schweizer A., Berger E. G., Hauri H. P., Yuan L. C., Klausner R. D. 1990; Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60:821–836 [CrossRef]
    [Google Scholar]
  29. Liu T. M., Zhou X. Z., Örvell C., Lederer E., Ljunggren H. G., Jondal M. 1995; Heat-inactivated Sendai virus can enter multiple MHC class I processing pathways and generate cytotoxic T lymphocyte responses in vivo . J Immunol 154:3147–3155
    [Google Scholar]
  30. López J. A., Bustos R., Örvell C., Berois M., Arbiza J., García-Barreno B., Melero J. A. 1998; Antigenic structure of human respiratory syncytial virus fusion glycoprotein. J Virol 72:6922–6928
    [Google Scholar]
  31. Lukens M. V., Claassen E. A., De Graaff P. M., van Dijk M. E., Hoogerhout P., Toebes M., Schumacher T. N., van der Most R. G., Kimpen J. L., van Bleek G. M. 2006; Characterization of the CD8+ T cell responses directed against respiratory syncytial virus during primary and secondary infection in C57BL/6 mice. Virology 352:157–168 [CrossRef]
    [Google Scholar]
  32. Neumeister C., Nanan R., Cornu T. I., Lüder C. G. K., ter Meulen V., Naim H., Niewiesk S. 2001; Measles virus and canine distemper virus target proteins into a TAP-independent MHC class I-restricted antigen-processing pathway. J Gen Virol 82:441–447
    [Google Scholar]
  33. Olmsted R. A., Elango N., Prince G. A., Murphy B. R., Johnson P. R., Moss B., Chanock R. M., Collins P. L. 1986; Expression of the F glycoprotein of respiratory syncytial virus by a recombinant vaccinia virus: comparison of the individual contributions of the F and G glycoproteins to host immunity. Proc Natl Acad Sci U S A 83:7462–7466 [CrossRef]
    [Google Scholar]
  34. Paliard X., Doe B., Selby M. J., Hartog K., Lee A. Y., Burke R. L., Walker C. M. 2001; Induction of herpes simplex virus gB-specific cytotoxic T lymphocytes in TAP1-deficient mice by genetic immunization but not HSV infection. Virology 282:56–64 [CrossRef]
    [Google Scholar]
  35. Pemberton R. M., Cannon M. J., Openshaw P. J. M., Ball L. A., Wertz G. W., Askonas B. A. 1987; Cytotoxic T cell specificity for respiratory syncytial virus proteins: fusion protein is an important target antigen. J Gen Virol 68:2177–2182 [CrossRef]
    [Google Scholar]
  36. Powis S. J., Young L. L., Joly E., Barker P. J., Richardson L., Brandt R. P., Melief C. J., Howard J. C., Butcher G. W. 1996; The rat cim effect: TAP allele-dependent changes in a class I MHC anchor motif and evidence against C-terminal trimming of peptides in the ER. Immunity 4:159–165 [CrossRef]
    [Google Scholar]
  37. Reits E., Griekspoor A., Neijssen J., Groothuis T., Jalink K., van Veelen P., Janssen H., Calafat J., Drijfhout J. W., Neefjes J. 2003; Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity 18:97–108 [CrossRef]
    [Google Scholar]
  38. Reits E., Neijssen J., Herberts C., Benckhuijsen W., Janssen L., Drijfhout J. W., Neefjes J. 2004; A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity 20:495–506 [CrossRef]
    [Google Scholar]
  39. Saveanu, L., Carroll, O., Lindo, V., Del Val, M., López, D., Lepelletier, Y., Greer, F., Schomburg, L., Fruci, D. & other authors. 2005; Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol 6:689–697
    [Google Scholar]
  40. Schirmbeck R., Reimann J. 2002; Alternative processing of endogenous or exogenous antigens extends the immunogenic, H-2 class I-restricted peptide repertoire. Mol Immunol 39:249–259 [CrossRef]
    [Google Scholar]
  41. Serwold T., González F., Kim J., Jacob R., Shastri N. 2002; ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419:480–483 [CrossRef]
    [Google Scholar]
  42. Snyder H. L., Bacík I., Bennink J. R., Kearns G., Behrens T. W., Bächi T., Orlowski M., Yewdell J. W. 1997; Two novel routes of transporter associated with antigen processing (TAP)-independent major histocompatibility complex class I antigen processing. J Exp Med 186:1087–1098 [CrossRef]
    [Google Scholar]
  43. Snyder H. L., Bacík I., Yewdell J. W., Behrens T. W., Bennink J. R. 1998; Promiscuous liberation of MHC-class I-binding peptides from the C termini of membrane and soluble proteins in the secretory pathway. Eur J Immunol 28:1339–1346 [CrossRef]
    [Google Scholar]
  44. Stott E. J., Taylor G., Ball L. A., Anderson K., Young K. K., King A. M., Wertz G. W. 1987; Immune and histopathological responses in animals vaccinated with recombinant vaccinia viruses that express individual genes of human respiratory syncytial virus. J Virol 61:3855–3861
    [Google Scholar]
  45. Tanioka T., Hattori A., Masuda S., Nomura Y., Nakayama H., Mizutani S., Tsujimoto M. 2003; Human leukocyte-derived arginine aminopeptidase – the third member of the oxytocinase subfamily of aminopeptidases. J Biol Chem 278:32275–32283 [CrossRef]
    [Google Scholar]
  46. Tiwari N., Garbi N., Reinheckel T., Moldenhauer G., Hammerling G. J., Momburg F. 2007; A transporter associated with antigen-processing independent vacuolar pathway for the MHC class I-mediated presentation of endogenous transmembrane proteins. J Immunol 178:7932–7942 [CrossRef]
    [Google Scholar]
  47. Wei M. L., Cresswell P. 1992; HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356:443–446 [CrossRef]
    [Google Scholar]
  48. York I. A., Chang S. C., Saric T., Keys J. A., Favreau J. M., Goldberg A. L., Rock K. L. 2002; The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat Immunol 3:1177–1184 [CrossRef]
    [Google Scholar]
  49. Zhou X., Glas R., Liu T., Ljunggren H. G., Jondal M. 1993; Antigen processing mutant T2 cells present viral antigen restricted through H-2Kb . Eur J Immunol 23:1802–1808 [CrossRef]
    [Google Scholar]
  50. Zhou X., Momburg F., Liu T., Abdel Motal U. M., Jondal M., Hämmerling G. J., Ljunggren H. G. 1994; Presentation of viral antigens restricted by H-2Kb, Db or Kd in proteasome subunit LMP2- and LMP7-deficient cells. Eur J Immunol 24:1863–1868 [CrossRef]
    [Google Scholar]
  51. Zimmer G., Budz L., Herrler G. 2001; Proteolytic activation of respiratory syncytial virus fusion protein. Cleavage at two furin consensus sequences. J Biol Chem 276:31642–31650 [CrossRef]
    [Google Scholar]
  52. Zweerink H. J., Gammon M. C., Utz U., Sauma S. Y., Harrer T., Hawkins J. C., Johnson R. P., Sirotina A., Hermes J. D. other authors 1993; Presentation of endogenous peptides to MHC class I-restricted cytotoxic T lymphocytes in transport deletion mutant T2 cells. J Immunol 150:1763–1771
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/002485-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/002485-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed