1887

Abstract

Infection with feline infectious peritonitis virus (FIPV), a feline coronavirus, frequently leads to death in spite of a strong humoral immune response. In previous work, we reported that infected monocytes, the target cells of FIPV, express viral proteins in their plasma membranes. These proteins are quickly internalized upon binding of antibodies. As the cell surface is cleared from viral proteins, internalization might offer protection against antibody-dependent cell lysis. Here, the internalization and subsequent trafficking of the antigen–antibody complexes were characterized using biochemical, cell biological and genetic approaches. Internalization occurred through a clathrin- and caveolae-independent pathway that did not require dynamin, rafts, actin or rho-GTPases. These findings indicate that the viral antigen–antibody complexes were not internalized through any of the previously described pathways. Further characterization showed that this internalization process was independent from phosphatases and tyrosine kinases but did depend on serine/threonine kinases. After internalization, the viral antigen–antibody complexes passed through the early endosomes, where they resided only briefly, and accumulated in the late endosomes. Between 30 and 60 min after antibody addition, the complexes left the late endosomes but were not degraded in the lysosomes. This study reveals what is probably a new internalization pathway into primary monocytes, confirming once more the complexity of endocytic processes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/002212-0
2008-11-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/11/2731.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/002212-0&mimeType=html&fmt=ahah

References

  1. Aderem, A. & Underhill, D. ( 1999; ). Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17, 593–623.[CrossRef]
    [Google Scholar]
  2. Benmerah, A., Lamaze, C., Begue, B., Schmid, S., Dautry-Varsat, A. & Cerf-Bensussan, N. ( 1998; ). AP-2/Eps15 interaction is required for receptor-mediated endocytosis. J Cell Biol 140, 1055–1062.[CrossRef]
    [Google Scholar]
  3. Benmerah, A., Bayrou, M., Cerf-Bensussan, N. & Dautry-Varsat, A. ( 1999; ). Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J Cell Sci 112, 1303–1311.
    [Google Scholar]
  4. Brodsky, F. M., Chen, C.-Y., Knuehl, C., Towler, M. C. & Wakeham, D. E. ( 2001; ). Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 17, 517–568.[CrossRef]
    [Google Scholar]
  5. Cao, H., Garcia, F. & McNiven, M. ( 1998; ). Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 9, 2595–2609.[CrossRef]
    [Google Scholar]
  6. Cao, H., Thompson, H., Krueger, E. & McNiven, M. ( 2000; ). Disruption of golgi structure and function in mammalian cells expressing a mutant dynamin. J Cell Sci 113, 1993–2002.
    [Google Scholar]
  7. Cobbold, C., Coventry, J., Ponnambalam, S. & Monaco, A. ( 2003; ). The menkes disease ATPase (ATP7A) is internalized via a Rac1-regulated, clathrin- and caveolae-independent pathway. Hum Mol Genet 12, 1523–1533.[CrossRef]
    [Google Scholar]
  8. Cornelissen, E., Dewerchin, H., Van Hamme, E. & Nauwynck, H. ( 2007; ). Absence of surface expression of feline infectious peritonitis virus (FIPV) antigens on infected cells isolated from cats with FIP. Vet Microbiol 121, 131–137.[CrossRef]
    [Google Scholar]
  9. Damm, E.-M., Pelkmans, L., Kartenbeck, J., Mezzacasa, A., Kurzchalia, T. & Helenius, A. ( 2005; ). Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 168, 477–488.[CrossRef]
    [Google Scholar]
  10. Dewerchin, H. L., Cornelissen, E. & Nauwynck, H. J. ( 2005; ). Replication of feline coronaviruses in peripheral blood monocytes. Arch Virol 150, 2483–2500.[CrossRef]
    [Google Scholar]
  11. Dewerchin, H. L., Cornelissen, E. & Nauwynck, H. J. ( 2006; ). Feline infectious peritonitis virus-infected monocytes internalize viral membrane-bound proteins upon antibody addition. J Gen Virol 87, 1685–1690.[CrossRef]
    [Google Scholar]
  12. Gilbert, J. M. & Benjamin, T. L. ( 2000; ). Early steps of polyomavirus entry into cells. J Virol 74, 8582–8588.[CrossRef]
    [Google Scholar]
  13. Gilbert, J. M., Goldberg, I. & Benjamin, T. L. ( 2003; ). Cell penetration and trafficking of polyomavirus. J Virol 77, 2615–2622.[CrossRef]
    [Google Scholar]
  14. Gold, E. S., Underhill, D. M., Morrissette, N. S., Guo, J., McNiven, M. A. & Aderem, A. ( 1999; ). Dynamin 2 is required for phagocytosis in macrophages. J Exp Med 190, 1849–1856.[CrossRef]
    [Google Scholar]
  15. Haagmans, B. L., Egberink, H. F. & Horzinek, M. C. ( 1996; ). Apoptosis and T-cell depletion during feline infectious peritonitis. J Virol 70, 8977–8983.
    [Google Scholar]
  16. Kipar, A., Kohler, K., Leukert, W. & Reinacher, M. ( 2001; ). A comparison of lymphatic tissues from cats with spontaneous feline infectious peritonitis (FIP), cats with FIP virus infection but no FIP, and cats with no infection. J Comp Pathol 125, 182–191.[CrossRef]
    [Google Scholar]
  17. Kurzchalia, T. V., Dupree, P., Parton, R. G., Kellner, R., Virta, H., Lehnert, M. & Simons, K. ( 1992; ). VIP21, a 21kD membrane protein is an integral component of trans-golgi-derived transport vesicles. J Cell Biol 118, 1003–1014.[CrossRef]
    [Google Scholar]
  18. Lamaze, C., Dujeancourt, A., Baba, T., Lo, C., Benmerah, A. & Dautry-Varsat, A. ( 2001; ). Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 7, 661–671.[CrossRef]
    [Google Scholar]
  19. Lewis, W. H. ( 1931; ). Pinocytosis. Johns Hopkins Hosp Bull 49, 17–27.
    [Google Scholar]
  20. McKeirnan, A. J., Evermann, J. F., Hargis, A., Miller, L. M. & Ott, R. L. ( 1981; ). Isolation of feline coronaviruses from two cats with diverse disease manifestations. Feline Pract 11, 16–20.
    [Google Scholar]
  21. Mellman, I. ( 1996; ). Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 12, 575–625.[CrossRef]
    [Google Scholar]
  22. Metchnikoff, E. ( 1905; ). Immunity in Infective Diseases. Cambridge: Cambridge University Press.
  23. Muro, S., Wiewrodt, R., Thomas, A., Koniaris, L., Albelda, S., Muzykantov, V. & Koval, M. ( 2003; ). A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J Cell Sci 116, 1599–1609.[CrossRef]
    [Google Scholar]
  24. Paltrinieri, S., Ponti, W., Comazzi, S., Giordano, A. & Poli, G. ( 2003; ). Shifts in circulating lymphocyte subsets in cats with feline infectious peritonitis (FIP): pathogenic role and diagnostic relevance. Vet Immunol Immunopathol 96, 141–148.[CrossRef]
    [Google Scholar]
  25. Pearse, B. M. ( 1975; ). Coated vesicles from pig brain: purification and biochemical characterization. J Mol Biol 97, 93–98.[CrossRef]
    [Google Scholar]
  26. Pelkmans, L. & Helenius, A. ( 2002; ). Endocytosis via caveolae. Traffic 3, 311–320.[CrossRef]
    [Google Scholar]
  27. Pelkmans, L., Kartenbeck, J. & Helenius, A. ( 2001; ). Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3, 473–483.[CrossRef]
    [Google Scholar]
  28. Razani, B., Woodman, S. & Lisanti, M. ( 2002; ). Caveolae: from cell biology to animal physiology. Pharmacol Rev 54, 431–467.[CrossRef]
    [Google Scholar]
  29. Roth, T. F. & Porter, K. R. ( 1964; ). Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. J Cell Biol 20, 313–332.[CrossRef]
    [Google Scholar]
  30. Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y. S., Glenney, J. R. & Anderson, R. G. ( 1992; ). Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682.[CrossRef]
    [Google Scholar]
  31. Sabharanjak, S. & Mayor, S. ( 2004; ). Folate receptor endocytosis and trafficking. Adv Drug Deliv Rev 56, 1099–1109.[CrossRef]
    [Google Scholar]
  32. Sabharanjak, S., Sharma, P., Parton, R. & Mayor, S. ( 2002; ). GPI-anchored proteins are delivered to recycling endosomes via a distinct Cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2, 411–423.[CrossRef]
    [Google Scholar]
  33. Sanchez-San Martin, C., Lopez, T., Arias, C. & Lopez, S. ( 2004; ). Characterization of rotavirus cell entry. J Virol 78, 2310–2318.[CrossRef]
    [Google Scholar]
  34. Stove, V., Van de Walle, I., Naessens, E., Coene, E., Stove, C., Plum, J. & Verhasselt, B. ( 2005; ). Human immunodeficiency virus Nef induces rapid internalization of T-cell coreceptor CD8α-β. J Virol 79, 11422–11433.[CrossRef]
    [Google Scholar]
  35. Swanson, J. A. & Watts, C. ( 1995; ). Macropinocytosis. Trends Cell Biol 5, 424–428.[CrossRef]
    [Google Scholar]
  36. Van Hamme, E., Dewerchin, H. L., Cornelissen, E., Verhasselt, B. & Nauwynck, H. J. ( 2008; ). Clathrin- and caveolae-independent entry of feline infectious peritonitis virus in monocytes depends on dynamin. J Gen Virol 89, 2147–2156.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/002212-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/002212-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 2731–2740

Mode of action of the internalization inhibitors [ PDF] (51 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error