1887

Abstract

Various G protein-coupled receptors (GPCRs) have the potential to work as co-receptors for human and simian immunodeficiency virus (HIV/SIV). HIV/SIV co-receptors have several tyrosines in their extracellular N-terminal region (NTR) as a common feature. However, the domain structure of the NTR that is critical for GPCRs to have co-receptor activity has not been identified. Comparative studies of different HIV/SIV co-receptors are an effective way to clarify the domain. These studies have been carried out only for the major co-receptors, CCR5 and CXCR4. A chemokine receptor, D6, has been shown to mediate infection of astrocytes with HIV-1. Recently, it was also found that an orphan GPCR, GPR1, and a formyl peptide receptor, FPRL1, work as potent HIV/SIV co-receptors in addition to CCR5 and CXCR4. To elucidate more about the domain of the NTR critical for HIV/SIV co-receptor activity, this study analysed the effects of mutations in the NTR on the co-receptor activity of D6, FPRL1 and GPR1 in addition to CCR5. The results identified a number of tyrosines that are indispensable for the activity of these co-receptors. The number and positions of those tyrosines varied among co-receptors and among HIV-1 strains. Moreover, it was found that a small domain of a few amino acids containing a tyrosine is critical for the co-receptor activity of GPR1. These findings will be useful in elucidating the mechanism that allows GPCRs to have the potential to act as HIV/SIV co-receptors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/002188-0
2008-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/12/3126.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/002188-0&mimeType=html&fmt=ahah

References

  1. Akagi, T., Shishido, T., Murata, K. & Hanafusa, H. ( 2000; ). v-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation. Proc Natl Acad Sci U S A 97, 7290–7295.[CrossRef]
    [Google Scholar]
  2. Blanpain, C., Doranz, B. J., Vakili, J., Rucker, J., Govaerts, C., Baik, S. S., Lorthioir, O., Migeotte, I., Libert, F. & other authors ( 1999; ). Multiple charged and aromatic residues in CCR5 amino-terminal domain are involved in high affinity binding of both chemokines and HIV-1 Env protein. J Biol Chem 274, 34719–34727.[CrossRef]
    [Google Scholar]
  3. Bleul, C. C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J. & Springer, T. A. ( 1996; ). The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382, 829–833.[CrossRef]
    [Google Scholar]
  4. Brelot, A., Heveker, N., Montes, M. & Alizon, M. ( 2000; ). Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities. J Biol Chem 275, 23736–23744.[CrossRef]
    [Google Scholar]
  5. Cheng-Mayer, C., Quiroga, M., Tung, J. W., Dina, D. & Levy, J. A. ( 1990; ). Viral determinants of human immunodeficiency virus type 1 T-cell or macrophage tropism, cytopathogenicity, and CD4 antigen modulation. J Virol 64, 4390–4398.
    [Google Scholar]
  6. Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., Wu, L., Mackay, C. R., LaRosa, G. & other authors ( 1996; ). The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135–1148.[CrossRef]
    [Google Scholar]
  7. Choe, H., Farzan, M., Konkel, M., Martin, K., Sun, Y., Marcon, L., Cayabyab, M., Berman, M., Dorf, M. E. & other authors ( 1998; ). The orphan seven-transmembrane receptor Apj supports the entry of primary T-cell-line-tropic and dualtropic human immunodeficiency virus type 1. J Virol 72, 6113–6118.
    [Google Scholar]
  8. Combadiere, C., Salzwedel, K., Smith, E. D., Tiffany, H. L., Berger, E. A. & Murphy, P. M. ( 1998; ). Identification of CX 3CR1. A chemotactic receptor for the human CX 3C chemokine fractalkine and a fusion coreceptor for HIV-1. J Biol Chem 273, 23799–23804.[CrossRef]
    [Google Scholar]
  9. Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., di Marzio, P., Marmon, S., Sutton, R. E. & other authors ( 1996; ). Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666.[CrossRef]
    [Google Scholar]
  10. Doranz, B. J., Rucker, J., Yi, Y., Smyth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G. & Doms, R. W. ( 1996; ). A dual-tropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusin cofactors. Cell 85, 1149–1158.[CrossRef]
    [Google Scholar]
  11. Doranz, B. J., Lu, Z. H., Rucker, J., Zhang, T. Y., Sharron, M., Cen, Y. H., Wang, Z. X., Guo, H. H., Du, J. G. & other authors ( 1997; ). Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1. J Virol 71, 6305–6314.
    [Google Scholar]
  12. Doranz, B. J., Orsini, M. J., Turner, J. D., Hoffman, T. L., Berson, J. F., Hoxie, J. A., Peiper, S. C., Brass, L. F. & Doms, R. W. ( 1999; ). Identification of CXCR4 domains that support coreceptor and chemokine receptor functions. J Virol 73, 2752–2761.
    [Google Scholar]
  13. Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huang, Y., Nagashima, K. A., Cayanan, C., Maddon, P. J., Koup, R. A. & other authors ( 1996; ). HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673.[CrossRef]
    [Google Scholar]
  14. Farzan, M., Choe, H., Martin, K., Marcon, L., Hofmann, W., Karlsson, G., Sun, Y., Barrett, P., Marchand, N. & other authors ( 1997; ). Two orphan seven-transmembrane segment receptors which are expressed in CD4-positive cells support simian immunodeficiency virus infection. J Exp Med 186, 405–411.[CrossRef]
    [Google Scholar]
  15. Farzan, M., Choe, H., Vaca, L., Martin, K., Sun, Y., Desjardins, E., Ruffing, N., Wu, L., Wyatt, R. & other authors ( 1998; ). A tyrosine-rich region in the N terminus of CCR5 is important for human immunodeficiency virus type 1 entry and mediates an association between gp120 and CCR5. J Virol 72, 1160–1164.
    [Google Scholar]
  16. Farzan, M., Mizabekov, T., Kolchinsky, P., Wyatt, R., Cayabyab, M., Gerard, N. P., Gerard, C., Sodroski, J. & Choe, H. ( 1999; ). Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667–676.[CrossRef]
    [Google Scholar]
  17. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. ( 1996; ). HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877.[CrossRef]
    [Google Scholar]
  18. Guyader, M., Emerman, M., Sonigo, P., Clavel, F., Montagnier, L. & Alizon, M. ( 1987; ). Genome organization and transactivation of the human immunodeficiency virus type 2. Nature 326, 662–669.[CrossRef]
    [Google Scholar]
  19. Hill, C. M., Kwon, D., Jones, M., Davis, C. B., Marmon, S., Daugherty, B. L., DeMartino, J. A., Springer, M. S., Unutmaz, D. & Littman, D. R. ( 1998; ). The amino terminus of human CCR5 is required for its function as a receptor for diverse human and simian immunodeficiency virus envelope glycoproteins. Virology 248, 357–371.[CrossRef]
    [Google Scholar]
  20. Hoshino, H., Esumi, H., Miwa, M., Shimoyama, M., Minato, K., Tobinai, K., Hirose, M., Watanabe, S., Inada, N. & other authors ( 1983; ). Establishment and characterization of 10 cell lines derived from patients with adult T-cell leukemia. Proc Natl Acad Sci U S A 80, 6061–6065.[CrossRef]
    [Google Scholar]
  21. Jinno, A., Shimizu, N., Soda, Y., Haraguchi, Y., Kitamura, T. & Hoshino, H. ( 1998; ). Identification of the chemokine receptor TER1/CCR8 expressed in brain-derived cells and T cells as a new coreceptor for HIV-1 infection. Biochem Biophys Res Commun 243, 497–502.[CrossRef]
    [Google Scholar]
  22. Jinno-Oue, A., Shimizu, N., Soda, Y., Tanaka, A., Otsuki, T., Kurosaki, D., Suzuki, Y. & Hoshino, H. ( 2005; ). The synthetic peptide derived from the NH2-terminal extracellular region of an orphan G protein-coupled receptor, GPR1, preferentially inhibits infection of X4 human immunodeficiency virus type 1. J Biol Chem 280, 30924–30934.[CrossRef]
    [Google Scholar]
  23. Kanbe, K., Shimizu, N., Soda, Y., Takagishi, K. & Hoshino, H. ( 1999; ). A CXC chemokine receptor, CXCR5/BLR1, is a novel and specific coreceptor for human immunodeficiency virus type 2. Virology 265, 264–273.[CrossRef]
    [Google Scholar]
  24. Misumi, S., Takamune, N., Ido, Y., Hayashi, S., Endo, M., Mukai, R., Tachibana, K., Umeda, M. & Shoji, S. ( 2001; ). Evidence as a HIV-1 self-defense vaccine of cyclic chimeric dodecapeptide warped from undecapeptidyl arch of extracellular loop 2 in both CCR5 and CXCR4. Biochem Biophys Res Commun 285, 1309–1316.[CrossRef]
    [Google Scholar]
  25. Monigatti, F., Gasteiger, E., Bairoch, A. & Jung, E. ( 2002; ). The Sulfinator: predicting tyrosine sulfation sites in protein sequences. Bioinformatics 18, 769–770.[CrossRef]
    [Google Scholar]
  26. Neil, S. J., Aasa-Chapman, M. M., Clapham, P. R., Nibbs, R. J., McKnight, A. & Weiss, R. A. ( 2005; ). The promiscuous CC chemokine receptor D6 is a functional coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and HIV-2 on astrocytes. J Virol 79, 9618–9624.[CrossRef]
    [Google Scholar]
  27. Nibbs, R. J., Wylie, S. M., Yang, J., Landau, N. R. & Graham, G. J. ( 1997; ). Cloning and characterization of a novel promiscuous human β-chemokine receptor D6. J Biol Chem 272, 32078–32083.[CrossRef]
    [Google Scholar]
  28. Perez, H. D., Holmes, R., Kelly, E., McClary, J. & Andrews, W. H. ( 1992; ). Cloning of a cDNA encoding a receptor related to the formyl peptide receptor of human neutrophils. Gene 118, 303–304.[CrossRef]
    [Google Scholar]
  29. Picard, L., Simmons, G., Power, C. A., Meyer, A., Weiss, R. A. & Clapham, P. R. ( 1997a; ). Multiple extracellular domains of CCR-5 contribute to human immunodeficiency virus type 1 entry and fusion. J Virol 71, 5003–5011.
    [Google Scholar]
  30. Picard, L., Wilkinson, D. A., McKnight, A., Gray, P. W., Hoxie, J. A., Clapham, P. R. & Weiss, R. A. ( 1997b; ). Role of the amino-terminal extracellular domain of CXCR-4 in human immunodeficiency virus type 1 entry. Virology 231, 105–111.[CrossRef]
    [Google Scholar]
  31. Pontow, S. & Ratner, L. ( 2001; ). Evidence for common structural determinants of human immunodeficiency virus type 1 coreceptor activity provided through functional analysis of CCR5/CXCR4 chimeric coreceptor. J Virol 75, 11503–11514.[CrossRef]
    [Google Scholar]
  32. Potempa, S., Picard, L., Reeves, J. D., Wilkinson, D., Weiss, R. W. & Talbot, S. J. ( 1997; ). CD4-independent infection by human immunodeficiency virus type 2 strain ROD/B: the role of the N-terminal domain of CXCR-4 in fusion and entry. J Virol 71, 4419–4424.
    [Google Scholar]
  33. Rabut, G. E., Konner, J. A., Kajumo, F., Moore, J. P. & Dragic, T. ( 1998; ). Alanine substitutions of polar and nonpolar residues in the amino-terminal domain of CCR5 differently impair entry of macrophage- and dualtropic isolates of human immunodeficiency virus type 1. J Virol 72, 3464–3468.
    [Google Scholar]
  34. Ratner, L., Haseltine, W., Patarca, R., Livak, K. J., Starcich, B., Josephs, S. F., Doran, E. R., Ralfalski, J. A. & other authors ( 1985; ). Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313, 277–284.[CrossRef]
    [Google Scholar]
  35. Reeves, J. D., Heveker, N., Brelot, A., Alizon, M., Clapham, P. R. & Picard, L. ( 1998; ). The second extracellular loop of CXCR4 is involved in CD4-independent entry of human immunodeficiency virus type 2. J Gen Virol 79, 1793–1799.
    [Google Scholar]
  36. Salahuddin, S. Z., Markham, P. D., Wang-Staal, F., Franchini, G. V., Kalyanaraman, V. S. & Gallo, R. C. ( 1983; ). Restricted expression of human T-cell leukaemia–lymphoma virus HTLV in transformed human umbilical cord blood lymphocytes. Virology 129, 51–54.[CrossRef]
    [Google Scholar]
  37. Samson, M., Edinger, A. L., Stordeur, P., Rucker, J., Verhasselt, V., Sharron, M., Govaerts, C., Mollereau, C., Vassart, G. & other authors ( 1998; ). ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur J Immunol 28, 1689–1700.[CrossRef]
    [Google Scholar]
  38. Shimizu, N. S., Shimizu, N. G., Takeuchi, Y. & Hoshino, H. ( 1994; ). Isolation and characterization of human immunodeficiency virus type 1 variants infectious to brain-derived cells: detection of common point mutations in the V3 region of the env gene of the variants. J Virol 68, 6130–6135.
    [Google Scholar]
  39. Shimizu, N., Soda, Y., Kanbe, K., Liu, H. Y., Jinno, A., Kitamura, T. & Hoshino, H. ( 1999; ). An orphan G protein-coupled receptor, GPR1, acts as a coreceptor to allow replication of human immunodeficiency virus types 1 and 2 in brain-derived cells. J Virol 73, 5231–5239.
    [Google Scholar]
  40. Shimizu, N., Soda, Y., Kanbe, K., Liu, H. Y., Mukai, R., Kitamura, T. & Hoshino, H. ( 2000; ). A putative G protein-coupled receptor, RDC1, is a novel coreceptor for human and simian immunodeficiency viruses. J Virol 74, 619–626.[CrossRef]
    [Google Scholar]
  41. Shimizu, N., Tanaka, A., Mori, T., Ohtsuki, T., Hoque, A., Jinno-Oue, A., Apichartpiyakul, C., Kusagawa, S., Takebe, Y. & Hoshino, H. ( 2008; ). A formylpeptide receptor, FPRL1, has the capacity to work as a novel efficient coreceptor for human and simian immunodeficiency viruses. Retrovirology 5, 52 [CrossRef]
    [Google Scholar]
  42. Soda, Y., Shimizu, N., Jinno, A., Liu, H. Y., Kanbe, K., Kitamura, T. & Hoshino, H. ( 1999; ). Establishment of a new system for determination of coreceptor usages of HIV based on the human glioma NP-2 cell line. Biochem Biophys Res Commun 258, 313–321.[CrossRef]
    [Google Scholar]
  43. Takeuchi, Y., Inagaki, M., Kobayashi, N. & Hoshino, H. ( 1987; ). Isolation of human immunodeficiency virus from a Japanese hemophilia B patient with AIDS. Jpn J Cancer Res 78, 11–15.
    [Google Scholar]
  44. Tokizawa, S., Shimizu, N., Liu, H. Y., Deyu, F., Haraguchi, Y., Oite, T. & Hoshino, H. ( 2000; ). Infection of mesangial cells with HIV and SIV: identification of GPR1 as a coreceptor. Kidney Int 58, 607–617.[CrossRef]
    [Google Scholar]
  45. Tsujimoto, H., Cooper, R. W., Kodama, T., Fukasawa, M., Miura, T., Ohta, Y., Ishikawa, K., Nakai, M., Frost, E. & Roelants, G. E. ( 1988; ). Isolation and characterization of simian immunodeficiency virus from mandrills in Africa and its relationship to other human and simian immunodeficiency viruses. J Virol 62, 4044–4050.
    [Google Scholar]
  46. Willey, S. J., Reeves, J. D., Hudson, R., Miyake, K., Dejucq, N., Schols, D., De Clercq, E., Bell, J., McKnight, A. & Clapham, P. R. ( 2003; ). Identification of a subset of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus strains able to exploit an alternative coreceptor on untransformed human brain and lymphoid cells. J Virol 77, 6138–6152.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/002188-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/002188-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 3126 - 3136

Primers used to construct the mutants of CCR5, D6, FPRL1 and GPR1 [PDF](58 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error