1887

Abstract

Various G protein-coupled receptors (GPCRs) have the potential to work as co-receptors for human and simian immunodeficiency virus (HIV/SIV). HIV/SIV co-receptors have several tyrosines in their extracellular N-terminal region (NTR) as a common feature. However, the domain structure of the NTR that is critical for GPCRs to have co-receptor activity has not been identified. Comparative studies of different HIV/SIV co-receptors are an effective way to clarify the domain. These studies have been carried out only for the major co-receptors, CCR5 and CXCR4. A chemokine receptor, D6, has been shown to mediate infection of astrocytes with HIV-1. Recently, it was also found that an orphan GPCR, GPR1, and a formyl peptide receptor, FPRL1, work as potent HIV/SIV co-receptors in addition to CCR5 and CXCR4. To elucidate more about the domain of the NTR critical for HIV/SIV co-receptor activity, this study analysed the effects of mutations in the NTR on the co-receptor activity of D6, FPRL1 and GPR1 in addition to CCR5. The results identified a number of tyrosines that are indispensable for the activity of these co-receptors. The number and positions of those tyrosines varied among co-receptors and among HIV-1 strains. Moreover, it was found that a small domain of a few amino acids containing a tyrosine is critical for the co-receptor activity of GPR1. These findings will be useful in elucidating the mechanism that allows GPCRs to have the potential to act as HIV/SIV co-receptors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/002188-0
2008-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/12/3126.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/002188-0&mimeType=html&fmt=ahah

References

  1. Akagi T., Shishido T., Murata K., Hanafusa H. 2000; v-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation. Proc Natl Acad Sci U S A 97:7290–7295 [CrossRef]
    [Google Scholar]
  2. Blanpain C., Doranz B. J., Vakili J., Rucker J., Govaerts C., Baik S. S., Lorthioir O., Migeotte I., Libert F. other authors 1999; Multiple charged and aromatic residues in CCR5 amino-terminal domain are involved in high affinity binding of both chemokines and HIV-1 Env protein. J Biol Chem 274:34719–34727 [CrossRef]
    [Google Scholar]
  3. Bleul C. C., Farzan M., Choe H., Parolin C., Clark-Lewis I., Sodroski J., Springer T. A. 1996; The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382:829–833 [CrossRef]
    [Google Scholar]
  4. Brelot A., Heveker N., Montes M., Alizon M. 2000; Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities. J Biol Chem 275:23736–23744 [CrossRef]
    [Google Scholar]
  5. Cheng-Mayer C., Quiroga M., Tung J. W., Dina D., Levy J. A. 1990; Viral determinants of human immunodeficiency virus type 1 T-cell or macrophage tropism, cytopathogenicity, and CD4 antigen modulation. J Virol 64:4390–4398
    [Google Scholar]
  6. Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D., Wu L., Mackay C. R., LaRosa G. other authors 1996; The β -chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85:1135–1148 [CrossRef]
    [Google Scholar]
  7. Choe H., Farzan M., Konkel M., Martin K., Sun Y., Marcon L., Cayabyab M., Berman M., Dorf M. E. other authors 1998; The orphan seven-transmembrane receptor Apj supports the entry of primary T-cell-line-tropic and dualtropic human immunodeficiency virus type 1. J Virol 72:6113–6118
    [Google Scholar]
  8. Combadiere C., Salzwedel K., Smith E. D., Tiffany H. L., Berger E. A., Murphy P. M. 1998; Identification of C X 3CR1. A chemotactic receptor for the human C X 3C chemokine fractalkine and a fusion coreceptor for HIV-1. J Biol Chem 273:23799–23804 [CrossRef]
    [Google Scholar]
  9. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., di Marzio P., Marmon S., Sutton R. E. other authors 1996; Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666 [CrossRef]
    [Google Scholar]
  10. Doranz B. J., Rucker J., Yi Y., Smyth R. J., Samson M., Peiper S. C., Parmentier M., Collman R. G., Doms R. W. 1996; A dual-tropic primary HIV-1 isolate that uses fusin and the β -chemokine receptors CKR-5, CKR-3, and CKR-2b as fusin cofactors. Cell 85:1149–1158 [CrossRef]
    [Google Scholar]
  11. Doranz B. J., Lu Z. H., Rucker J., Zhang T. Y., Sharron M., Cen Y. H., Wang Z. X., Guo H. H., Du J. G. other authors 1997; Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1. J Virol 71:6305–6314
    [Google Scholar]
  12. Doranz B. J., Orsini M. J., Turner J. D., Hoffman T. L., Berson J. F., Hoxie J. A., Peiper S. C., Brass L. F., Doms R. W. 1999; Identification of CXCR4 domains that support coreceptor and chemokine receptor functions. J Virol 73:2752–2761
    [Google Scholar]
  13. Dragic T., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashima K. A., Cayanan C., Maddon P. J., Koup R. A. other authors 1996; HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673 [CrossRef]
    [Google Scholar]
  14. Farzan M., Choe H., Martin K., Marcon L., Hofmann W., Karlsson G., Sun Y., Barrett P., Marchand N. other authors 1997; Two orphan seven-transmembrane segment receptors which are expressed in CD4-positive cells support simian immunodeficiency virus infection. J Exp Med 186:405–411 [CrossRef]
    [Google Scholar]
  15. Farzan M., Choe H., Vaca L., Martin K., Sun Y., Desjardins E., Ruffing N., Wu L., Wyatt R. other authors 1998; A tyrosine-rich region in the N terminus of CCR5 is important for human immunodeficiency virus type 1 entry and mediates an association between gp120 and CCR5. J Virol 72:1160–1164
    [Google Scholar]
  16. Farzan M., Mizabekov T., Kolchinsky P., Wyatt R., Cayabyab M., Gerard N. P., Gerard C., Sodroski J., Choe H. 1999; Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96:667–676 [CrossRef]
    [Google Scholar]
  17. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877 [CrossRef]
    [Google Scholar]
  18. Guyader M., Emerman M., Sonigo P., Clavel F., Montagnier L., Alizon M. 1987; Genome organization and transactivation of the human immunodeficiency virus type 2. Nature 326:662–669 [CrossRef]
    [Google Scholar]
  19. Hill C. M., Kwon D., Jones M., Davis C. B., Marmon S., Daugherty B. L., DeMartino J. A., Springer M. S., Unutmaz D., Littman D. R. 1998; The amino terminus of human CCR5 is required for its function as a receptor for diverse human and simian immunodeficiency virus envelope glycoproteins. Virology 248:357–371 [CrossRef]
    [Google Scholar]
  20. Hoshino H., Esumi H., Miwa M., Shimoyama M., Minato K., Tobinai K., Hirose M., Watanabe S., Inada N. other authors 1983; Establishment and characterization of 10 cell lines derived from patients with adult T-cell leukemia. Proc Natl Acad Sci U S A 80:6061–6065 [CrossRef]
    [Google Scholar]
  21. Jinno A., Shimizu N., Soda Y., Haraguchi Y., Kitamura T., Hoshino H. 1998; Identification of the chemokine receptor TER1/CCR8 expressed in brain-derived cells and T cells as a new coreceptor for HIV-1 infection. Biochem Biophys Res Commun 243:497–502 [CrossRef]
    [Google Scholar]
  22. Jinno-Oue A., Shimizu N., Soda Y., Tanaka A., Otsuki T., Kurosaki D., Suzuki Y., Hoshino H. 2005; The synthetic peptide derived from the NH2-terminal extracellular region of an orphan G protein-coupled receptor, GPR1, preferentially inhibits infection of X4 human immunodeficiency virus type 1. J Biol Chem 280:30924–30934 [CrossRef]
    [Google Scholar]
  23. Kanbe K., Shimizu N., Soda Y., Takagishi K., Hoshino H. 1999; A CXC chemokine receptor, CXCR5/BLR1, is a novel and specific coreceptor for human immunodeficiency virus type 2. Virology 265:264–273 [CrossRef]
    [Google Scholar]
  24. Misumi S., Takamune N., Ido Y., Hayashi S., Endo M., Mukai R., Tachibana K., Umeda M., Shoji S. 2001; Evidence as a HIV-1 self-defense vaccine of cyclic chimeric dodecapeptide warped from undecapeptidyl arch of extracellular loop 2 in both CCR5 and CXCR4. Biochem Biophys Res Commun 285:1309–1316 [CrossRef]
    [Google Scholar]
  25. Monigatti F., Gasteiger E., Bairoch A., Jung E. 2002; The Sulfinator: predicting tyrosine sulfation sites in protein sequences. Bioinformatics 18:769–770 [CrossRef]
    [Google Scholar]
  26. Neil S. J., Aasa-Chapman M. M., Clapham P. R., Nibbs R. J., McKnight A., Weiss R. A. 2005; The promiscuous CC chemokine receptor D6 is a functional coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and HIV-2 on astrocytes. J Virol 79:9618–9624 [CrossRef]
    [Google Scholar]
  27. Nibbs R. J., Wylie S. M., Yang J., Landau N. R., Graham G. J. 1997; Cloning and characterization of a novel promiscuous human β -chemokine receptor D6. J Biol Chem 272:32078–32083 [CrossRef]
    [Google Scholar]
  28. Perez H. D., Holmes R., Kelly E., McClary J., Andrews W. H. 1992; Cloning of a cDNA encoding a receptor related to the formyl peptide receptor of human neutrophils. Gene 118:303–304 [CrossRef]
    [Google Scholar]
  29. Picard L., Simmons G., Power C. A., Meyer A., Weiss R. A., Clapham P. R. 1997a; Multiple extracellular domains of CCR-5 contribute to human immunodeficiency virus type 1 entry and fusion. J Virol 71:5003–5011
    [Google Scholar]
  30. Picard L., Wilkinson D. A., McKnight A., Gray P. W., Hoxie J. A., Clapham P. R., Weiss R. A. 1997b; Role of the amino-terminal extracellular domain of CXCR-4 in human immunodeficiency virus type 1 entry. Virology 231:105–111 [CrossRef]
    [Google Scholar]
  31. Pontow S., Ratner L. 2001; Evidence for common structural determinants of human immunodeficiency virus type 1 coreceptor activity provided through functional analysis of CCR5/CXCR4 chimeric coreceptor. J Virol 75:11503–11514 [CrossRef]
    [Google Scholar]
  32. Potempa S., Picard L., Reeves J. D., Wilkinson D., Weiss R. W., Talbot S. J. 1997; CD4-independent infection by human immunodeficiency virus type 2 strain ROD/B: the role of the N-terminal domain of CXCR-4 in fusion and entry. J Virol 71:4419–4424
    [Google Scholar]
  33. Rabut G. E., Konner J. A., Kajumo F., Moore J. P., Dragic T. 1998; Alanine substitutions of polar and nonpolar residues in the amino-terminal domain of CCR5 differently impair entry of macrophage- and dualtropic isolates of human immunodeficiency virus type 1. J Virol 72:3464–3468
    [Google Scholar]
  34. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Ralfalski J. A. other authors 1985; Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313:277–284 [CrossRef]
    [Google Scholar]
  35. Reeves J. D., Heveker N., Brelot A., Alizon M., Clapham P. R., Picard L. 1998; The second extracellular loop of CXCR4 is involved in CD4-independent entry of human immunodeficiency virus type 2. J Gen Virol 79:1793–1799
    [Google Scholar]
  36. Salahuddin S. Z., Markham P. D., Wang-Staal F., Franchini G. V., Kalyanaraman V. S., Gallo R. C. 1983; Restricted expression of human T-cell leukaemia–lymphoma virus HTLV in transformed human umbilical cord blood lymphocytes. Virology 129:51–54 [CrossRef]
    [Google Scholar]
  37. Samson M., Edinger A. L., Stordeur P., Rucker J., Verhasselt V., Sharron M., Govaerts C., Mollereau C., Vassart G. other authors 1998; ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur J Immunol 28:1689–1700 [CrossRef]
    [Google Scholar]
  38. Shimizu N. S., Shimizu N. G., Takeuchi Y., Hoshino H. 1994; Isolation and characterization of human immunodeficiency virus type 1 variants infectious to brain-derived cells: detection of common point mutations in the V3 region of the env gene of the variants. J Virol 68:6130–6135
    [Google Scholar]
  39. Shimizu N., Soda Y., Kanbe K., Liu H. Y., Jinno A., Kitamura T., Hoshino H. 1999; An orphan G protein-coupled receptor, GPR1, acts as a coreceptor to allow replication of human immunodeficiency virus types 1 and 2 in brain-derived cells. J Virol 73:5231–5239
    [Google Scholar]
  40. Shimizu N., Soda Y., Kanbe K., Liu H. Y., Mukai R., Kitamura T., Hoshino H. 2000; A putative G protein-coupled receptor, RDC1, is a novel coreceptor for human and simian immunodeficiency viruses. J Virol 74:619–626 [CrossRef]
    [Google Scholar]
  41. Shimizu N., Tanaka A., Mori T., Ohtsuki T., Hoque A., Jinno-Oue A., Apichartpiyakul C., Kusagawa S., Takebe Y., Hoshino H. 2008; A formylpeptide receptor, FPRL1, has the capacity to work as a novel efficient coreceptor for human and simian immunodeficiency viruses. Retrovirology 5:52 [CrossRef]
    [Google Scholar]
  42. Soda Y., Shimizu N., Jinno A., Liu H. Y., Kanbe K., Kitamura T., Hoshino H. 1999; Establishment of a new system for determination of coreceptor usages of HIV based on the human glioma NP-2 cell line. Biochem Biophys Res Commun 258:313–321 [CrossRef]
    [Google Scholar]
  43. Takeuchi Y., Inagaki M., Kobayashi N., Hoshino H. 1987; Isolation of human immunodeficiency virus from a Japanese hemophilia B patient with AIDS. Jpn J Cancer Res 78:11–15
    [Google Scholar]
  44. Tokizawa S., Shimizu N., Liu H. Y., Deyu F., Haraguchi Y., Oite T., Hoshino H. 2000; Infection of mesangial cells with HIV and SIV: identification of GPR1 as a coreceptor. Kidney Int 58:607–617 [CrossRef]
    [Google Scholar]
  45. Tsujimoto H., Cooper R. W., Kodama T., Fukasawa M., Miura T., Ohta Y., Ishikawa K., Nakai M., Frost E., Roelants G. E. 1988; Isolation and characterization of simian immunodeficiency virus from mandrills in Africa and its relationship to other human and simian immunodeficiency viruses. J Virol 62:4044–4050
    [Google Scholar]
  46. Willey S. J., Reeves J. D., Hudson R., Miyake K., Dejucq N., Schols D., De Clercq E., Bell J., McKnight A., Clapham P. R. 2003; Identification of a subset of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus strains able to exploit an alternative coreceptor on untransformed human brain and lymphoid cells. J Virol 77:6138–6152 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/002188-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/002188-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error