1887

Abstract

The poly(A)-binding protein (PABP) is an important translation initiation factor that binds to the polyadenylated 3′ end of mRNA. We have previously shown that PABP2 interacts with the RNA-dependent RNA polymerase (RdRp) and VPg-Pro of turnip mosaic virus (TuMV) within virus-induced vesicles. At least eight PABP isoforms are produced in , three of which (PABP2, PABP4 and PABP8) are highly and broadly expressed and probably constitute the bulk of PABP required for cellular functions. Upon TuMV infection, an increase in protein and mRNA expression from , and genes was recorded. binding assays revealed that RdRp and the viral genome-linked protein (VPg-Pro) interact preferentially with PABP2 but are also capable of interaction with one or both of the other class II PABPs (i.e. PABP4 and PABP8). To assess whether PABP is required for potyvirus replication, single and double knockouts were isolated and inoculated with TuMV. All lines showed susceptibility to TuMV. However, when precise monitoring of viral RNA accumulation was performed, it was found to be reduced by 2.2- and 3.5-fold in and mutants, respectively, when compared with wild-type plants. PABP levels were most significantly reduced in the membrane-associated fraction in both of these mutants. TuMV mRNA levels thus correlated with cellular PABP concentrations in these knockout lines. These data provide further support for a role of PABP in potyvirus replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/002139-0
2008-09-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/9/2339.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/002139-0&mimeType=html&fmt=ahah

References

  1. Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H., Shinn, P., Stevenson, D. K., Zimmerman, J., Barajas, P. & other authors ( 2003; ). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657.[CrossRef]
    [Google Scholar]
  2. Alvarez, E., Castella, A., Menandez-Arias, L. & Carrasco, L. ( 2006; ). HIV protease cleaves poly(A)-binding protein. Biochem J 396, 219–226.[CrossRef]
    [Google Scholar]
  3. Amrani, N., Minet, M., Le Gouar, M., Lacroute, F. & Wyers, F. ( 1997; ). Yeast Pab1 interacts with Rna15 and participates in the control of the poly(A) tail length in vitro. Mol Cell Biol 17, 3694–3701.
    [Google Scholar]
  4. Beauchemin, C. & Laliberté, J.-F. ( 2007; ). The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during Turnip mosaic virus infection. J Virol 81, 10905–10913.[CrossRef]
    [Google Scholar]
  5. Beauchemin, C., Boutet, N. & Laliberté, J.-F. ( 2007; ). Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of Turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in planta. J Virol 81, 775–782.[CrossRef]
    [Google Scholar]
  6. Behm-Ansmant, I., Gatfield, D., Rehwinkel, J., Hilgers, V. & Izaurralde, E. ( 2007; ). A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO J 26, 1591–1601.[CrossRef]
    [Google Scholar]
  7. Belostotsky, D. A. ( 2003; ). Unexpected complexity of poly(A)-binding protein gene families in flowering plants: three conserved lineages that are at least 200 million years old and possible auto- and cross-regulation. Genetics 163, 311–319.
    [Google Scholar]
  8. Bradrick, S. S., Dobrikova, E. Y., Kaiser, C., Shveygert, M. & Gromeier, M. ( 2007; ). Poly(A)-binding protein is differentially required for translation mediated by viral internal ribosome entry sites. RNA 13, 1582–1593.[CrossRef]
    [Google Scholar]
  9. Brown, C. E. & Sachs, A. B. ( 1998; ). Poly(A) tail length control in Saccharomyces cerevisiae occurs by message-specific deadenylation. Mol Cell Biol 18, 6548–6559.
    [Google Scholar]
  10. Brune, C., Munchel, S. E., Fischer, N., Podtelejnikov, A. V. & Weis, K. ( 2005; ). Yeast poly(A)-binding protein Pab1 shuttles between the nucleus and the cytoplasm and functions in mRNA export. RNA 11, 517–531.[CrossRef]
    [Google Scholar]
  11. Charron, C., Nicolai, M., Gallois, J.-L., Robaglia, C., Moury, B., Palloix, A. & Caranta, C. ( 2008; ). Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. Plant J 54, 56–68.[CrossRef]
    [Google Scholar]
  12. Decroocq, V., Sicard, O., Alamillo, J., Lansac, M., Eyquard, J., García, J., Candresse, T., Le Gall, O. & Revers, F. ( 2006; ). Multiple resistance traits control Plum pox virus infection in Arabidopsis thaliana. Mol Plant Microbe Interact 19, 541–549.[CrossRef]
    [Google Scholar]
  13. Dufresne, P. J., Thivierge, K., Cotton, S., Beauchemin, C., Ide, C., Ubalijoro, E., Laliberté, J.-F. & Fortin, M. G. ( 2008; ). Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles. Virology 374, 217–227.[CrossRef]
    [Google Scholar]
  14. Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K. S. & Robaglia, C. ( 2002; ). The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32, 927–934.[CrossRef]
    [Google Scholar]
  15. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A. (editors) ( 2005; ). Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier Academic Press.
  16. Gallie, D. R. ( 2001; ). Cap-independent translation conferred by the 5′ leader of Tobacco etch virus is eukaryotic initiation factor 4G dependent. J Virol 75, 12141–12152.[CrossRef]
    [Google Scholar]
  17. Gallie, D. R., Tanguay, R. L. & Leathers, V. ( 1995; ). The tobacco etch viral 5′ leader and poly(A) tail are functionally synergistic regulators of translation. Gene 165, 233–238.[CrossRef]
    [Google Scholar]
  18. Gao, Z., Johansen, E., Eyers, S., Thomas, C. L., Noel Ellis, T. H. & Maule, A. J. ( 2004; ). The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J 40, 376–385.[CrossRef]
    [Google Scholar]
  19. Herold, J. & Andino, R. ( 2001; ). Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol Cell 7, 581–591.[CrossRef]
    [Google Scholar]
  20. Joachims, M., Van Breugel, P. C. & Lloyd, R. E. ( 1999; ). Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol 73, 718–727.
    [Google Scholar]
  21. Kang, B.-C., Yeam, I., Frantz, J. D., Murphy, J. F. & Jahn, M. M. ( 2005; ). The pvr1 locus in capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J 42, 392–405.[CrossRef]
    [Google Scholar]
  22. Kerekatte, V., Keiper, B. D., Badorff, C., Cai, A., Knowlton, K. U. & Rhoads, R. E. ( 1999; ). Cleavage of poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff? J Virol 73, 709–717.
    [Google Scholar]
  23. Khaleghpour, K., Svitkin, Y. V., Craig, A. W., DeMaria, C. T., Deo, R. C., Burley, S. K. & Sonenberg, N. ( 2001; ). Translational repression by a novel partner of human poly(A)-binding protein, Paip2. Mol Cell 7, 205–216.[CrossRef]
    [Google Scholar]
  24. Khan, M. A., Miyoshi, H., Ray, S., Natsuaki, T., Suehiro, N. & Goss, D. J. ( 2006; ). Interaction of genome-linked protein (VPg) of Turnip mosaic virus with wheat germ translation initiation factors eIFiso4E and eIFiso4F. J Biol Chem 281, 28002–28010.[CrossRef]
    [Google Scholar]
  25. Kuyumcu-Martinez, N. M., Joachims, M. & Lloyd, R. E. ( 2002; ). Efficient cleavage of ribosome-associated poly(A)-binding protein by enterovirus 3C protease. J Virol 76, 2062–2074.[CrossRef]
    [Google Scholar]
  26. Kuyumcu-Martinez, M., Belliot, G., Sosnovtsev, S. V., Chang, K.-O., Green, K. Y. & Lloyd, R. E. ( 2004a; ). Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly(A)-binding protein. J Virol 78, 8172–8182.[CrossRef]
    [Google Scholar]
  27. Kuyumcu-Martinez, N. M., Van Eden, M. E., Younan, P. & Lloyd, R. E. ( 2004b; ). Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff. Mol Cell Biol 24, 1779–1790.[CrossRef]
    [Google Scholar]
  28. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  29. Lellis, A. D., Kasschau, K. D., Whitham, S. A. & Carrington, J. C. ( 2002; ). Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol 12, 1046–1051.[CrossRef]
    [Google Scholar]
  30. Léonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M. G. & Laliberté, J.-F. ( 2000; ). Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 74, 7730–7737.[CrossRef]
    [Google Scholar]
  31. Léonard, S., Viel, C., Beauchemin, C., Daigneault, N., Fortin, M. G. & Laliberté, J.-F. ( 2004; ). Interaction of VPg-Pro of Turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta. J Gen Virol 85, 1055–1063.[CrossRef]
    [Google Scholar]
  32. Mangus, D. A., Evans, M. C. & Jacobson, A. ( 2003; ). Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 4, 223 [CrossRef]
    [Google Scholar]
  33. Menard, R., Chatel, H., Dupras, R., Plouffe, C. & Laliberté, J. F. ( 1995; ). Purification of Turnip mosaic potyvirus viral protein genome-linked proteinase expressed in Escherichia coli and development of a quantitative assay for proteolytic activity. Eur J Biochem 229, 107–112.[CrossRef]
    [Google Scholar]
  34. Michel, Y. M., Poncet, D., Piron, M., Kean, K. M. & Borman, A. M. ( 2000; ). Cap-poly(A) synergy in mammalian cell-free extracts. Investigation of the requirements for poly(A)-mediated stimulation of translation initiation. J Biol Chem 275, 32268–32276.[CrossRef]
    [Google Scholar]
  35. Montero, H., Arias, C. F. & Lopez, S. ( 2006; ). Rotavirus nonstructural protein NSP3 is not required for viral protein synthesis. J Virol 80, 9031–9038.[CrossRef]
    [Google Scholar]
  36. Nicaise, V., German-Retana, S., Sanjuan, R., Dubrana, M.-P., Mazier, M., Maisonneuve, B., Candresse, T., Caranta, C. & LeGall, O. ( 2003; ). The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus. Plant Physiol 132, 1272–1282.[CrossRef]
    [Google Scholar]
  37. Nicaise, V., Gallois, J.-L., Chafiai, F., Allen, L. M., Schurdi-Levraud, V., Browning, K. S., Candresse, T., Caranta, C., Le Gall, O. & German-Retana, S. ( 2007; ). Coordinated and selective recruitment of eIF4E and eIF4G factors for potyvirus infection in Arabidopsis thaliana. FEBS Lett 581, 1041–1046.[CrossRef]
    [Google Scholar]
  38. Nicolas, O. & Laliberté, J. F. ( 1992; ). The complete nucleotide sequence of Turnip mosaic potyvirus RNA. J Gen Virol 73, 2785–2793.[CrossRef]
    [Google Scholar]
  39. Parker, R. & Song, H. ( 2004; ). The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11, 121–127.[CrossRef]
    [Google Scholar]
  40. Pfaffl, M. W. ( 2001; ). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45 [CrossRef]
    [Google Scholar]
  41. Pfaffl, M. W., Horgan, G. W. & Dempfle, L. ( 2002; ). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30, e36 [CrossRef]
    [Google Scholar]
  42. Piron, M., Vende, P., Cohen, J. & Poncet, D. ( 1998; ). Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 17, 5811–5821.[CrossRef]
    [Google Scholar]
  43. Robaglia, C. & Caranta, C. ( 2006; ). Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11, 40–45.
    [Google Scholar]
  44. Rodriguez Pulido, M., Serrano, P., Saiz, M. & Martinez-Salas, E. ( 2007; ). Foot-and-mouth disease virus infection induces proteolytic cleavage of PTB, eIF3a,b, and PABP RNA-binding proteins. Virology 364, 466–474.[CrossRef]
    [Google Scholar]
  45. Ruffel, S., Dussault, M.-H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. & Caranta, C. ( 2002; ). A natural recessive resistance gene against Potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32, 1067–1075.[CrossRef]
    [Google Scholar]
  46. Ruffel, S., Gallois, J., Lesage, M. & Caranta, C. ( 2005; ). The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol Genet Genomics 274, 346–353.[CrossRef]
    [Google Scholar]
  47. Ruffel, S., Gallois, J.-L., Moury, B., Robaglia, C., Palloix, A. & Caranta, C. ( 2006; ). Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent Pepper veinal mottle virus infection of pepper. J Gen Virol 87, 2089–2098.[CrossRef]
    [Google Scholar]
  48. Sachs, A. ( 2000; ). Physical and functional interactions between the mRNA cap structure and the poly(A) tail. In Translational Control of Gene Expression, pp. 447–465. Edited by N. Sonenberg, J. W. B. Hershey & M. B. Mathews. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  49. Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M. & Uyeda, I. ( 2005; ). Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett 579, 1167–1171.[CrossRef]
    [Google Scholar]
  50. Schaad, M. C., Jensen, P. E. & Carrington, J. C. ( 1997; ). Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J 16, 4049–4059.[CrossRef]
    [Google Scholar]
  51. Schaad, M. C., Anderberg, R. J. & Carrington, J. C. ( 2000; ). Strain-specific interaction of the Tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273, 300–306.[CrossRef]
    [Google Scholar]
  52. Svitkin, Y. V., Imataka, H., Khaleghpour, K., Kahvejian, A., Liebig, H. D. & Sonenberg, N. ( 2001; ). Poly(A)-binding protein interaction with elF4G stimulates picornavirus IRES-dependent translation. RNA 7, 1743–1752.
    [Google Scholar]
  53. Thivierge, K., Nicaise, V., Dufresne, P. J., Cotton, S., Laliberté, J. F., Le Gall, O. & Fortin, M. G. ( 2005; ). Plant virus RNAs. Coordinated recruitment of conserved host functions by (+) ssRNA viruses during early infection events. Plant Physiol 138, 1822–1827.[CrossRef]
    [Google Scholar]
  54. Wang, X., Ullah, Z. & Grumet, R. ( 2000; ). Interaction between Zucchini yellow mosaic potyvirus RNA-dependent RNA polymerase and host poly(A)-binding protein. Virology 275, 433–443.[CrossRef]
    [Google Scholar]
  55. Wells, S. E., Hillner, P. E., Vale, R. D. & Sachs, A. B. ( 1998; ). Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2, 135–140.[CrossRef]
    [Google Scholar]
  56. Wittmann, S., Chatel, H., Fortin, M. G. & Laliberte, J. F. ( 1997; ). Interaction of the viral protein genome linked of Turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234, 84–92.[CrossRef]
    [Google Scholar]
  57. Yamada, K., Lim, J., Dale, J. M., Chen, H., Shinn, P., Palm, C. J., Southwick, A. M., Wu, H. C., Kim, C. & other authors ( 2003; ). Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302, 842–846.[CrossRef]
    [Google Scholar]
  58. Yang, C., Guo, R., Jie, F., Nettleton, D., Peng, J., Carr, T., Yeakley, J. M., Fan, J.-B. & Whitham, S. A. ( 2007; ). Spatial analysis of Arabidopsis thaliana gene expression in response to Turnip mosaic virus infection. Mol Plant Microbe Interact 20, 358–370.[CrossRef]
    [Google Scholar]
  59. Yeam, I., Cavatorta, J. R., Ripoll, D. R., Kang, B.-C. & Jahn, M. M. ( 2007; ). Functional dissection of naturally occurring amino acid substitutions in eIF4E that confers recessive potyvirus resistance in plants. Plant Cell 19, 2913–2928.[CrossRef]
    [Google Scholar]
  60. Zhang, B., Morace, G., Gauss-Muller, V. & Kusov, Y. ( 2007; ). Poly(A) binding protein, C-terminally truncated by the hepatitis A virus proteinase 3C, inhibits viral translation. Nucleic Acids Res 35, 5975–5984.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/002139-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/002139-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error