1887

Abstract

Rift Valley fever virus (RVFV) is responsible for large and recurrent outbreaks of acute febrile illness among humans and domesticated animals in Africa. It belongs to the family , genus , and its negative-stranded RNA genome consists of three segments. Here, we report the establishment and characterization of two different systems to rescue the RVFV wild-type strain ZH548. The first system is based on the BHK-21 cell clone BSR-T7/5, which stably expresses T7 RNA polymerase (T7 pol). Rescue of wild-type RVFV was achieved with three T7 pol-driven cDNA plasmids representing the viral RNA segments in the antigenomic sense. The second system involves 293T cells transfected with three RNA pol I-driven plasmids for the viral segments and two RNA pol II-driven support plasmids to express the viral polymerase components L and N. It is known that the 5′ triphosphate group of T7 pol transcripts strongly activates the antiviral interferon system via the intracellular RNA receptor RIG-I. Nonetheless, both the T7 pol and the pol I/II system were of similar efficiency. This was even true for the rescue of a RVFV mutant lacking the interferon antagonist nonstructural proteins. Further experiments demonstrated that the unresponsiveness of BHK-21 and BSR-T7/5 cells to T7 pol transcripts is most probably due to a deficiency in the RIG-I pathway. Our reverse genetics systems now enable us to manipulate the genome of RVFV and study its virulence mechanisms. Moreover, the finding that BHK-derived cell lines have a compromised RIG-I pathway may explain their suitability for propagating and rescuing a wide variety of viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/002097-0
2008-09-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/9/2157.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/002097-0&mimeType=html&fmt=ahah

References

  1. Andzhaparidze, O. G., Bogomolova, N. N., Boriskin, Y. S., Bektemirova, M. S. & Drynov, I. D. ( 1981; ). Comparative study of rabies virus persistence in human and hamster cell lines. J Virol 37, 1–6.
    [Google Scholar]
  2. Balkhy, H. H. & Memish, Z. A. ( 2003; ). Rift Valley fever: an uninvited zoonosis in the Arabian peninsula. Int J Antimicrob Agents 21, 153–157.[CrossRef]
    [Google Scholar]
  3. Billecocq, A., Spiegel, M., Vialat, P., Kohl, A., Weber, F., Bouloy, M. & Haller, O. ( 2004; ). NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J Virol 78, 9798–9806.[CrossRef]
    [Google Scholar]
  4. Binder, M., Kochs, G., Bartenschlager, R. & Lohmann, V. ( 2007; ). Hepatitis C virus escape from the interferon regulatory factor 3 pathway by a passive and active evasion strategy. Hepatology 46, 1365–1374.[CrossRef]
    [Google Scholar]
  5. Bird, B. H., Albarino, C. G. & Nichol, S. T. ( 2007; ). Rift Valley fever virus lacking NSm proteins retains high virulence in vivo and may provide a model of human delayed onset neurologic disease. Virology 362, 10–15.[CrossRef]
    [Google Scholar]
  6. Blakqori, G. & Weber, F. ( 2005; ). Efficient cDNA-based rescue of La Crosse bunyaviruses expressing or lacking the nonstructural protein NSs. J Virol 79, 10420–10428.[CrossRef]
    [Google Scholar]
  7. Blakqori, G., Kochs, G., Haller, O. & Weber, F. ( 2003; ). Functional L polymerase of La Crosse virus allows in vivo reconstitution of recombinant nucleocapsids. J Gen Virol 84, 1207–1214.[CrossRef]
    [Google Scholar]
  8. Blakqori, G., Delhaye, S., Habjan, M., Blair, C. D., Sanchez-Vargas, I., Olson, K. E., Attarzadeh-Yazdi, G., Fragkoudis, R., Kohl, A. & other authors ( 2007; ). La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts. J Virol 81, 4991–4999.[CrossRef]
    [Google Scholar]
  9. Blight, K. J., McKeating, J. A. & Rice, C. M. ( 2002; ). Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76, 13001–13014.[CrossRef]
    [Google Scholar]
  10. Bluyssen, H. A. & Levy, D. E. ( 1997; ). Stat2 is a transcriptional activator that requires sequence-specific contacts provided by Stat1 and p48 for stable interaction with DNA. J Biol Chem 272, 4600–4605.[CrossRef]
    [Google Scholar]
  11. Borio, L., Inglesby, T., Peters, C. J., Schmaljohn, A. L., Hughes, J. M., Jahrling, P. B., Ksiazek, T., Johnson, K. M., Meyerhoff, A. & other authors ( 2002; ). Hemorrhagic fever viruses as biological weapons: medical and public health management. JAMA 287, 2391–2405.[CrossRef]
    [Google Scholar]
  12. Bouloy, M., Janzen, C., Vialat, P., Khun, H., Pavlovic, J., Huerre, M. & Haller, O. ( 2001; ). Genetic evidence for an interferon-antagonistic function of rift valley fever virus nonstructural protein NSs. J Virol 75, 1371–1377.[CrossRef]
    [Google Scholar]
  13. Bridgen, A. & Elliott, R. M. ( 1996; ). Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci U S A 93, 15400–15404.[CrossRef]
    [Google Scholar]
  14. Brzozka, K., Finke, S. & Conzelmann, K. K. ( 2006; ). Inhibition of interferon signaling by rabies virus phosphoprotein P: activation-dependent binding of STAT1 and STAT2. J Virol 80, 2675–2683.[CrossRef]
    [Google Scholar]
  15. Buchholz, U. J., Finke, S. & Conzelmann, K. K. ( 1999; ). Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73, 251–259.
    [Google Scholar]
  16. Conzelmann, K. K. ( 2004; ). Reverse genetics of mononegavirales. Curr Top Microbiol Immunol 283, 1–41.
    [Google Scholar]
  17. de Wit, E., Spronken, M. I., Vervaet, G., Rimmelzwaan, G. F., Osterhaus, A. D. & Fouchier, R. A. ( 2007; ). A reverse-genetics system for influenza A virus using T7 RNA polymerase. J Gen Virol 88, 1281–1287.[CrossRef]
    [Google Scholar]
  18. Elliott, R. M. ( 1996; ). The Bunyaviridae. New York: Plenum Press.
  19. Elliott, R. M. ( 1997; ). Emerging viruses: the Bunyaviridae. Mol Med 3, 572–577.
    [Google Scholar]
  20. Ferran, M. C. & Lucas-Lenard, J. M. ( 1997; ). The vesicular stomatitis virus matrix protein inhibits transcription from the human beta interferon promoter. J Virol 71, 371–377.
    [Google Scholar]
  21. Flatz, L., Bergthaler, A., de la Torre, J. C. & Pinschewer, D. D. ( 2006; ). Recovery of an arenavirus entirely from RNA polymerase I/II-driven cDNA. Proc Natl Acad Sci U S A 103, 4663–4668.[CrossRef]
    [Google Scholar]
  22. Fromont-Racine, M., Senger, B., Saveanu, C. & Fasiolo, F. ( 2003; ). Ribosome assembly in eukaryotes. Gene 313, 17–42.[CrossRef]
    [Google Scholar]
  23. Gerrard, S. R., Bird, B. H., Albarino, C. G. & Nichol, S. T. ( 2007; ). The NSm proteins of Rift Valley fever virus are dispensable for maturation, replication and infection. Virology 359, 459–465.[CrossRef]
    [Google Scholar]
  24. Groseth, A., Feldmann, H., Theriault, S., Mehmetoglu, G. & Flick, R. ( 2005; ). RNA polymerase I-driven minigenome system for Ebola viruses. J Virol 79, 4425–4433.[CrossRef]
    [Google Scholar]
  25. Habjan, M., Andersson, I., Klingstrom, J., Schumann, M., Martin, A., Zimmermann, P., Wagner, V., Pichlmair, A., Schneider, U. & other authors ( 2008; ). Processing of genome 5′ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS ONE 3, e2032 [CrossRef]
    [Google Scholar]
  26. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. ( 2000; ). A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97, 6108–6113.[CrossRef]
    [Google Scholar]
  27. Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K. K. & other authors ( 2006; ). 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997.[CrossRef]
    [Google Scholar]
  28. Ikegami, T., Peters, C. J. & Makino, S. ( 2005; ). Rift valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system. J Virol 79, 5606–5615.[CrossRef]
    [Google Scholar]
  29. Ikegami, T., Won, S., Peters, C. J. & Makino, S. ( 2006; ). Rescue of infectious Rift Valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J Virol 80, 2933–2940.[CrossRef]
    [Google Scholar]
  30. Karabatsos, N. & Buckley, S. M. ( 1967; ). Susceptibility of the baby-hamster kidney-cell line (BHK-21) to infection with arboviruses. Am J Trop Med Hyg 16, 99–105.
    [Google Scholar]
  31. Kim, D. H., Longo, M., Han, Y., Lundberg, P., Cantin, E. & Rossi, J. J. ( 2004; ). Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol 22, 321–325.[CrossRef]
    [Google Scholar]
  32. Le May, N., Dubaele, S., De Santis, L. P., Billecocq, A., Bouloy, M. & Egly, J. M. ( 2004; ). TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell 116, 541–550.[CrossRef]
    [Google Scholar]
  33. Le May, N., Mansuroglu, Z., Leger, P., Josse, T., Blot, G., Billecocq, A., Flick, R., Jacob, Y., Bonnefoy, E. & Bouloy, M. ( 2008; ). A SAP30 complex inhibits IFN-beta expression in Rift Valley fever virus infected cells. PLoS Pathog 4, e13 [CrossRef]
    [Google Scholar]
  34. Lowen, A. C., Noonan, C., McLees, A. & Elliott, R. M. ( 2004; ). Efficient bunyavirus rescue from cloned cDNA. Virology 330, 493–500.[CrossRef]
    [Google Scholar]
  35. MacDonald, M. R., Machlin, E. S., Albin, O. R. & Levy, D. E. ( 2007; ). The zinc finger antiviral protein acts synergistically with an interferon-induced factor for maximal activity against alphaviruses. J Virol 81, 13509–13518.[CrossRef]
    [Google Scholar]
  36. Meegan, J. M., Hoogstraal, H. & Moussa, M. I. ( 1979; ). An epizootic of Rift Valley fever in Egypt in 1977. Vet Rec 105, 124–125.[CrossRef]
    [Google Scholar]
  37. Neumann, G., Watanabe, T., Ito, H., Watanabe, S., Goto, H., Gao, P., Hughes, M., Perez, D. R., Donis, R. & other authors ( 1999; ). Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A 96, 9345–9350.[CrossRef]
    [Google Scholar]
  38. Ogawa, Y., Sugiura, K., Kato, K., Tohya, Y. & Akashi, H. ( 2007; ). Rescue of Akabane virus (family Bunyaviridae) entirely from cloned cDNAs by using RNA polymerase I. J Gen Virol 88, 3385–3390.[CrossRef]
    [Google Scholar]
  39. Otsuki, K., Maeda, J., Yamamoto, H. & Tsubokura, M. ( 1979; ). Studies on avian infectious bronchitis virus (IBV). III. Interferon induction by and sensitivity to interferon of IBV. Arch Virol 60, 249–255.[CrossRef]
    [Google Scholar]
  40. Pichlmair, A., Schulz, O., Tan, C. P., Naslund, T. I., Liljestrom, P., Weber, F. & Reis e Sousa, C. ( 2006; ). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001.[CrossRef]
    [Google Scholar]
  41. Plumet, S., Herschke, F., Bourhis, J. M., Valentin, H., Longhi, S. & Gerlier, D. ( 2007; ). Cytosolic 5′-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response. PLoS ONE 2, e279 [CrossRef]
    [Google Scholar]
  42. Sanchez, A. B. & de la Torre, J. C. ( 2006; ). Rescue of the prototypic Arenavirus LCMV entirely from plasmid. Virology 350, 370–380.[CrossRef]
    [Google Scholar]
  43. Shatkin, A. J. & Manley, J. L. ( 2000; ). The ends of the affair: capping and polyadenylation. Nat Struct Biol 7, 838–842.[CrossRef]
    [Google Scholar]
  44. Stanwick, T. L. & Hallum, J. V. ( 1974; ). Role of interferon in six cell lines persistently infected with rubella virus. Infect Immun 10, 810–815.
    [Google Scholar]
  45. Struthers, J. K., Swanepoel, R. & Shepherd, S. P. ( 1984; ). Protein synthesis in Rift Valley fever virus-infected cells. Virology 134, 118–124.[CrossRef]
    [Google Scholar]
  46. Sumpter, R., Jr, Loo, Y. M., Foy, E., Li, K., Yoneyama, M., Fujita, T., Lemon, S. M. & Gale, M., Jr ( 2005; ). Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79, 2689–2699.[CrossRef]
    [Google Scholar]
  47. Vialat, P., Billecocq, A., Kohl, A. & Bouloy, M. ( 2000; ). The S segment of rift valley fever phlebovirus (Bunyaviridae) carries determinants for attenuation and virulence in mice. J Virol 74, 1538–1543.[CrossRef]
    [Google Scholar]
  48. Won, S., Ikegami, T., Peters, C. J. & Makino, S. ( 2006; ). NSm and 78-kilodalton proteins of Rift Valley fever virus are nonessential for viral replication in cell culture. J Virol 80, 8274–8278.[CrossRef]
    [Google Scholar]
  49. Zhong, J., Gastaminza, P., Cheng, G., Kapadia, S., Kato, T., Burton, D. R., Wieland, S. F., Uprichard, S. L., Wakita, T. & Chisari, F. V. ( 2005; ). Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102, 9294–9299.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/002097-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/002097-0
Loading

Data & Media loading...

Supplements

[Single PDF](70 KB)

PDF

[PDF](57 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error