1887

Abstract

Human metapneumovirus (HMPV) causes acute respiratory tract illness primarily in young children, immunocompromised individuals and the elderly. Vaccines would be desirable to prevent severe illnesses in these risk groups. Here, we describe the generation and evaluation of cold-passage (cp) temperature-sensitive (ts) HMPV strains as vaccine candidates. Repeated passage of HMPV at low temperatures in Vero cells resulted in the accumulation of mutations in the viral genome. Introduction of these mutations in a recombinant HMPV by reverse genetics resulted in a ts-phenotype, judged on the decreased shut-off temperature for virus replication . As an alternative approach, three previously described cp-respiratory syncytial virus (cp-HRSV) mutations were introduced in a recombinant HMPV, which also resulted in a low shut-off temperature . Replication of these ts-viruses containing either the cp-HMPV or cp-HRSV mutations was reduced in the upper respiratory tract (URT) and undetectable in the lower respiratory tract (LRT) of hamsters. Nevertheless, high titres of HMPV-specific antibodies were induced by both ts-viruses. Upon immunization with the ts-viruses, the LRT of hamsters were completely protected against challenge infection with a heterologous HMPV strain, and URT viral titres were reduced by 10 000-fold. In conclusion, we provide proof-of-principle for two candidate live-attenuated HMPV vaccines that induce cross-protective immunity to prevent infection of the LRT in Syrian golden hamsters. Further mapping of the molecular determinants of attenuation of HMPV should be the subject of future studies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/002022-0
2008-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/7/1553.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/002022-0&mimeType=html&fmt=ahah

References

  1. Biacchesi S., Skiadopoulos M. H., Tran K. C., Murphy B. R., Collins P. L., Buchholz U. J. 2004; Recovery of human metapneumovirus from cDNA: optimization of growth in vitro and expression of additional genes. Virology 321:247–259 [CrossRef]
    [Google Scholar]
  2. Biacchesi S., Pham Q. N., Skiadopoulos M. H., Murphy B. R., Collins P. L., Buchholz U. J. 2005; Infection of nonhuman primates with recombinant human metapneumovirus lacking the SH, G, or M2–2 protein categorizes each as a nonessential accessory protein and identifies vaccine candidates. J Virol 79:12608–12613 [CrossRef]
    [Google Scholar]
  3. Biacchesi S., Pham Q. N., Skiadopoulos M. H., Murphy B. R., Collins P. L., Buchholz U. J. 2006; Modification of the trypsin-dependent cleavage activation site of the human metapneumovirus fusion protein to be trypsin independent does not increase replication or spread in rodents or nonhuman primates. J Virol 80:5798–5806 [CrossRef]
    [Google Scholar]
  4. Cseke G., Wright D. W., Tollefson S. J., Johnson J. E., Crowe J. E. Jr, Williams J. V. 2007; Human metapneumovirus fusion protein vaccines that are immunogenic and protective in cotton rats. J Virol 81:698–707 [CrossRef]
    [Google Scholar]
  5. de Graaf M., Herfst S., Schrauwen E. J., van den Hoogen B. G., Osterhaus A. D., Fouchier R. A. 2007; An improved plaque reduction virus neutralization assay for human metapneumovirus. J Virol Methods 143:169–174 [CrossRef]
    [Google Scholar]
  6. de Swart R. L., van den Hoogen B. G., Kuiken T., Herfst S., van Amerongen G., Yuksel S., Sprong L., Osterhaus A. D. 2007; Immunization of macaques with formalin-inactivated human metapneumovirus induces hypersensitivity to hMPV infection. Vaccine 25:8518–8528 [CrossRef]
    [Google Scholar]
  7. Firestone C. Y., Whitehead S. S., Collins P. L., Murphy B. R., Crowe J. E. Jr 1996; Nucleotide sequence analysis of the respiratory syncytial virus subgroup A cold-passaged (cp) temperature sensitive (ts) cpts-248/404 live attenuated virus vaccine candidate. Virology 225:419–422 [CrossRef]
    [Google Scholar]
  8. Fulginiti V. A., Eller J. J., Downie A. W., Kempe C. H. 1967; Altered reactivity to measles virus. Atypical measles in children previously immunized with inactivated measles virus vaccines. JAMA 202:1075–1080 [CrossRef]
    [Google Scholar]
  9. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  10. Hamelin M. E., Couture C., Sackett M. K., Boivin G. 2007; Enhanced lung disease and Th2 response following human metapneumovirus infection in mice immunized with the inactivated virus. J Gen Virol 88:3391–3400 [CrossRef]
    [Google Scholar]
  11. Herd K. A., Mahalingam S., Mackay I. M., Nissen M., Sloots T. P., Tindle R. W. 2006; Cytotoxic T-lymphocyte epitope vaccination protects against human metapneumovirus infection and disease in mice. J Virol 80:2034–2044 [CrossRef]
    [Google Scholar]
  12. Herfst S., Fouchier R. A. 2008; Vaccination approaches to combat human metapneumovirus lower respiratory tract infections. J Clin Virol 41:49–52 [CrossRef]
    [Google Scholar]
  13. Herfst S., de Graaf M., Schickli J. H., Tang R. S., Kaur J., Yang C. F., Spaete R. R., Haller A. A., van den Hoogen B. G. other authors 2004; Recovery of human metapneumovirus genetic lineages A and B from cloned cDNA. J Virol 78:8264–8270 [CrossRef]
    [Google Scholar]
  14. Herfst S., de Graaf M., Schrauwen E. J., Ulbrandt N. D., Barnes A. S., Senthil K., Osterhaus A. D., Fouchier R. A., van den Hoogen B. G. 2007; Immunization of Syrian golden hamsters with F subunit vaccine of human metapneumovirus induces protection against challenge with homologous or heterologous strains. J Gen Virol 88:2702–2709 [CrossRef]
    [Google Scholar]
  15. Juhasz K., Whitehead S. S., Bui P. T., Biggs J. M., Crowe J. E., Boulanger C. A., Collins P. L., Murphy B. R. 1997; The temperature-sensitive (ts) phenotype of a cold-passaged (cp) live attenuated respiratory syncytial virus vaccine candidate, designated cpts530, results from a single amino acid substitution in the L protein. J Virol 71:5814–5819
    [Google Scholar]
  16. Juhasz K., Whitehead S. S., Boulanger C. A., Firestone C. Y., Collins P. L., Murphy B. R. 1999; The two amino acid substitutions in the L protein of cpts530/1009, a live-attenuated respiratory syncytial virus candidate vaccine, are independent temperature-sensitive and attenuation mutations. Vaccine 17:1416–1424 [CrossRef]
    [Google Scholar]
  17. Kim H. W., Canchola J. G., Brandt C. D., Pyles G., Chanock R. M., Jensen K., Parrott R. H. 1969; Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 89:422–434
    [Google Scholar]
  18. Kuiken T., Van Den Hoogen B. G., Van Riel D. A., Laman J. D., Van Amerongen G., Sprong L., Fouchier R. A., Osterhaus A. D. 2004; Experimental human metapneumovirus infection of cynomolgus macaques ( Macaca fascicularis ) results in virus replication in ciliated epithelial cells and pneumocytes with associated lesions throughout the respiratory tract. Am J Pathol 164:1893–1900 [CrossRef]
    [Google Scholar]
  19. Pham Q. N., Biacchesi S., Skiadopoulos M. H., Murphy B. R., Collins P. L., Buchholz U. J. 2005; Chimeric recombinant human metapneumoviruses with the nucleoprotein or phosphoprotein open reading frame replaced by that of avian metapneumovirus exhibit improved growth in vitro and attenuation in vivo . J Virol 79:15114–15122 [CrossRef]
    [Google Scholar]
  20. Polack F. P. 2007; Atypical measles and enhanced respiratory syncytial virus disease (ERD) made simple. Pediatr Res 62:111–115 [CrossRef]
    [Google Scholar]
  21. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent end points. Am J Hyg 27:493–497
    [Google Scholar]
  22. Schickli J. H., Kaur J., Ulbrandt N., Spaete R. R., Tang R. S. 2005; An S101P substitution in the putative cleavage motif of the human metapneumovirus fusion protein is a major determinant for trypsin-independent growth in Vero cells and does not alter tissue tropism in hamsters. J Virol 79:10678–10689 [CrossRef]
    [Google Scholar]
  23. Skiadopoulos M. H., Surman S. R., St Claire M., Elkins W. R., Collins P. L., Murphy B. R. 1999; Attenuation of the recombinant human parainfluenza virus type 3 cp45 candidate vaccine virus is augmented by importation of the respiratory syncytial virus cpts530 L polymerase mutation. Virology 260:125–135 [CrossRef]
    [Google Scholar]
  24. Skiadopoulos M. H., Biacchesi S., Buchholz U. J., Amaro-Carambot E., Surman S. R., Collins P. L., Murphy B. R. 2006; Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity. Virology 345:492–501 [CrossRef]
    [Google Scholar]
  25. Tang R. S., Mahmood K., Macphail M., Guzzetta J. M., Haller A. A., Liu H., Kaur J., Lawlor H. A., Stillman E. A. other authors 2005; A host-range restricted parainfluenza virus type 3 (PIV3) expressing the human metapneumovirus (hMPV) fusion protein elicits protective immunity in African green monkeys. Vaccine 23:1657–1667 [CrossRef]
    [Google Scholar]
  26. van den Hoogen B. G., de Jong J. C., Groen J., Kuiken T., de Groot R., Fouchier R. A., Osterhaus A. D. 2001; A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 7:719–724 [CrossRef]
    [Google Scholar]
  27. van den Hoogen B. G., van Doornum G. J. J., Fockens J. C., Cornelissen J. J., Beyer W. E. P., de Groot R., Osterhaus A. D. M. E., Fouchier R. A. M. 2003; Prevalence and clinical symptoms of human metapneumovirus infection in hospitalized patients. J Infect Dis 188:1571–1577 [CrossRef]
    [Google Scholar]
  28. van den Hoogen B. G., Herfst S., Sprong L., Cane P. A., Forleo E., de Swart R. L., Osterhaus A. D. M. E., Fouchier R. A. M. 2004; Antigenic and genetic variability of human metapneumoviruses. Emerg Infect Dis 10:658–666 [CrossRef]
    [Google Scholar]
  29. van den Hoogen B. G., Herfst S., de Graaf M., Sprong L., van Lavieren R., van Amerongen G., Yuksel S., Fouchier R. A., Osterhaus A. D., de Swart R. L. 2007; Experimental infection of macaques with human metapneumovirus induces transient protective immunity. J Gen Virol 88:1251–1259 [CrossRef]
    [Google Scholar]
  30. Whitehead S. S., Firestone C. Y., Karron R. A., Crowe J. E. Jr, Elkins W. R., Collins P. L., Murphy B. R. 1999; Addition of a missense mutation present in the L gene of respiratory syncytial virus (RSV) cpts530/1030 to RSV vaccine candidate cpts248/404 increases its attenuation and temperature sensitivity. J Virol 73:871–877
    [Google Scholar]
  31. Williams J. V., Wang C. K., Yang C. F., Tollefson S. J., House F. S., Heck J. M., Chu M., Brown J. B., Lintao L. D. other authors 2006; The role of human metapneumovirus in upper respiratory tract infections in children: a 20-year experience. J Infect Dis 193:387–395 [CrossRef]
    [Google Scholar]
  32. Yim K. C., Cragin R. P., Boukhvalova M. S., Blanco J. C., Hamlin M. E., Boivin G., Porter D. D., Prince G. A. 2007; Human metapneumovirus: enhanced pulmonary disease in cotton rats immunized with formalin-inactivated virus vaccine and challenged. Vaccine 25:5034–5040 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/002022-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/002022-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error