1887

Abstract

Enteropathogens are known to disrupt apical actin filaments and/or tight-junction barriers of intestinal epithelial cells to promote infection. In this study, we show that a controlled, cytochalasin-D (Cyto-D)-mediated disruption of actin filaments and tight junctions enhanced the apical delivery of the gene-therapy vector recombinant adeno-associated virus serotype 2 (rAAV2). This increase in transduction efficiency can be attributed to the enhanced delivery of rAAV2 across the Cyto-D disrupted tight junctions, allowing basolateral entry of rAAV2. Previously, we have shown that MG101 and doxorubicin are capable of overcoming proteasome-mediated transduction barriers of rAAV2 in enterocytes. In this study, when Cyto-D was combined with MG101 and doxorubicin in apical delivery of rAAV2 to transduce the differentiated Caco-2 enterocytes, a synergistic >2300-fold increase in transgene expression was achieved. We conclude that Cyto-D is capable of permeating the polarized enterocytes for rAAV2 transduction, which may potentially be a useful device to facilitate intestinal gene transfer via the gut lumen.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/001446-0
2008-12-01
2020-10-31
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/12/3004.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/001446-0&mimeType=html&fmt=ahah

References

  1. Ashok A., Atwood W. J. 2003; Contrasting roles of endosomal pH and the cytoskeleton in infection of human glial cells by JC virus and simian virus 40. J Virol 77:1347–1356 [CrossRef]
    [Google Scholar]
  2. Carreno S., Engqvist-Goldstein A. E., Zhang C. X., McDonald K. L., Drubin D. G. 2004; Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network. J Cell Biol 165:781–788 [CrossRef]
    [Google Scholar]
  3. Cheung A. T., Dayanandan B., Lewis J. T., Korbutt G. S., Rajotte R. V., Bryer-Ash M., Boylan M. O., Wolfe M. M., Kieffer T. J. 2000; Glucose-dependent insulin release from genetically engineered K cells. Science 290:1959–1962 [CrossRef]
    [Google Scholar]
  4. Chu J. J., Ng M. L. 2002; Infection of polarized epithelial cells with flavivirus West Nile: polarized entry and egress of virus occur through the apical surface. J Gen Virol 83:2427–2435
    [Google Scholar]
  5. Chu J. J., Ng M. L. 2004; Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 78:10543–10555 [CrossRef]
    [Google Scholar]
  6. Duan D., Yue Y., Yan Z., Yang J., Engelhardt J. F. 2000; Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest 105:1573–1587 [CrossRef]
    [Google Scholar]
  7. During M. J., Xu R., Young D., Kaplitt M. G., Sherwin R. S., Leone P. 1998; Peroral gene therapy of lactose intolerance using an adeno-associated virus vector. Nat Med 4:1131–1135 [CrossRef]
    [Google Scholar]
  8. During M. J., Symes C. W., Lawlor P. A., Lin J., Dunning J., Fitzsimons H. L., Poulsen D., Leone P., Xu R. other authors 2000; An oral vaccine against NMDAR1 with efficacy in experimental stroke and epilepsy. Science 287:1453–1460 [CrossRef]
    [Google Scholar]
  9. Ferrari F. K., Samulski T., Shenk T., Samulski R. J. 1996; Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 70:3227–3234
    [Google Scholar]
  10. Gardet A., Breton M., Fontanges P., Trugnan G., Chwetzoff S. 2006; Rotavirus spike protein VP4 binds to and remodels actin bundles of the epithelial brush border into actin bodies. J Virol 80:3947–3956 [CrossRef]
    [Google Scholar]
  11. Manno C. S., Arruda V. R., Pierce G. F., Glader B., Ragni M., Rasko J., Ozelo M. C., Hoots K., Blatt P. other authors 2006; Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12:342–347 [CrossRef]
    [Google Scholar]
  12. Misinzo G., Meerts P., Bublot M., Mast J., Weingartl H. M., Nauwynck H. J. 2005; Binding and entry characteristics of porcine circovirus 2 in cells of the porcine monocytic line 3D4/31. J Gen Virol 86:2057–2068 [CrossRef]
    [Google Scholar]
  13. Moss R. B., Rodman D., Spencer L. T., Aitken M. L., Zeitlin P. L., Waltz D., Milla C., Brody A. S., Clancy J. P. other authors 2004; Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest 125:509–521 [CrossRef]
    [Google Scholar]
  14. Pajusola K., Gruchala M., Joch H., Luscher T. F., Yla-Herttuala S., Bueler H. 2002; Cell-type-specific characteristics modulate the transduction efficiency of adeno-associated virus type 2 and restrain infection of endothelial cells. J Virol 76:11530–11540 [CrossRef]
    [Google Scholar]
  15. Prieto J., Herraiz M., Sangro B., Qian C., Mazzolini G., Melero I., Ruiz J. 2003; The promise of gene therapy in gastrointestinal and liver diseases. Gut 52:Suppl. 2ii49–ii54
    [Google Scholar]
  16. Sampath P., Pollard T. D. 1991; Effects of cytochalasin, phalloidin, and pH on the elongation of actin-filaments. Biochemistry 30:1973–1980 [CrossRef]
    [Google Scholar]
  17. Shao G. H., Greathouse K., Huang Q., Wang C. M., Sferra T. J. 2006; Gene transfer to the gastrointestinal tract after peroral administration of recombinant adeno-associated virus type 2 vectors. J Pediatr Gastroenterol Nutr 43:168–179 [CrossRef]
    [Google Scholar]
  18. Sousa S., Lecuit M., Cossart P. 2005; Microbial strategies to target, cross or disrupt epithelia. Curr Opin Cell Biol 17:489–498 [CrossRef]
    [Google Scholar]
  19. Spector I., Braet F., Shochet N. R., Bubb M. R. 1999; New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microsc Res Tech 47:18–37 [CrossRef]
    [Google Scholar]
  20. Stevenson B. R., Begg D. A. 1994; Concentration-dependent effects of cytochalasin D on tight junctions and actin filaments in MDCK epithelial cells. J Cell Sci 107:367–375
    [Google Scholar]
  21. Tang S. C., Sambanis A. 2003; Development of genetically engineered human intestinal cells for regulated insulin secretion using rAAV-mediated gene transfer. Biochem Biophys Res Commun 303:645–652 [CrossRef]
    [Google Scholar]
  22. Tang S. C., Sibley E. 2006; Genetic modification of somatic gut mucosa: an adeno-associated virus approach. J Pediatr Gastroenterol Nutr 43:158–159 [CrossRef]
    [Google Scholar]
  23. Tang S. C., Sambanis A., Sibley E. 2005; Proteasome modulating agents induce rAAV2-mediated transgene expression in human intestinal epithelial cells. Biochem Biophys Res Commun 331:1392–1400 [CrossRef]
    [Google Scholar]
  24. Thomas C. E., Storm T. A., Huang Z., Kay M. A. 2004; Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 78:3110–3122 [CrossRef]
    [Google Scholar]
  25. Veldwijk M. R., Topaly J., Laufs S., Hengge U. R., Wenz F., Zeller W. J., Fruehauf S. 2002; Development and optimization of a real-time quantitative PCR-based method for the titration of AAV-2 vector stocks. Mol Ther 6:272–278 [CrossRef]
    [Google Scholar]
  26. Wells C. L., van de Westerlo E. M., Jechorek R. P., Haines H. M., Erlandsen S. L. 1998; Cytochalasin-induced actin disruption of polarized enterocytes can augment internalization of bacteria. Infect Immun 66:2410–2419
    [Google Scholar]
  27. Wirtz S., Neurath M. F. 2003; Gene transfer approaches for the treatment of inflammatory bowel disease. Gene Ther 10:854–860 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/001446-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/001446-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error