1887

Abstract

Rz is a multimeric hammerhead ribozyme targeting seven unique sites within the human CCR5 mRNA that is active . Mouse stem cell virus-based MGIN and human immunodeficiency virus (HIV)-1-based HEG1 vectors were used to express Rz in a human CD4 T lymphoid cell line. Stable transductants expressed Rz, which was further shown to be active, since CCR5 mRNA and surface CCR5 protein expression levels decreased. High levels of progeny virus were produced when the transduced cells were challenged with an X4-tropic HIV-1 (NL4-3) strain, suggesting that Rz expression does not affect X4-tropic virus replication. When the transduced cells expressing Rz were challenged with the R5-tropic HIV-1 (BaL) strain, 99–100 % inhibition of progeny virus production was observed for the duration of the experiment (∼2 months). When the cells were precultured for 2–3 months prior to HIV-1 infection, inhibition was more prominent in cells transduced with MGIN-Rz than with HEG1-Rz. Inhibition occurred at the level of viral entry, as no HIV-1 DNA could be detected. These results demonstrate that Rz confers excellent inhibition of R5-tropic HIV-1 replication at the level of entry. Therefore, we anticipate that this multimeric ribozyme will be beneficial for HIV-1 gene therapy.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/001222-0
2008-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/9/2252.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/001222-0&mimeType=html&fmt=ahah

References

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. 1986; Production of acquired immunodefiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59:284–291
    [Google Scholar]
  2. Bai J., Gorantla S., Banda N., Cagnon L., Rossi J., Akkina R. 2000; Characterization of anti-CCR5 ribozyme-transduced CD34+ hematopoietic progenitor cells in vitro and in a SCID-hu mouse model in vivo . Mol Ther 1:244–254 [CrossRef]
    [Google Scholar]
  3. Bai J., Rossi J. J., Akkina R. 2001; Multivalent anti-CCR5 ribozymes for stem cell-based HIV-1 gene therapy. AIDS Res Hum Retroviruses 17:385–399 [CrossRef]
    [Google Scholar]
  4. Berger E. A., Doms R. W., Fenyo E. M., Korber B. T., Littman D. R., Moore J. P., Sattentau Q. J., Schuitemaker H., Sodroski J., Weiss R. A. 1998; A new classification for HIV-1. Nature 391:240–245 [CrossRef]
    [Google Scholar]
  5. Burns J. C., Friedmann T., Driever W., Burrascano M., Yee J. K. 1993; VSV-G glycoprotein pseudotyped retroviral vectors: concentration to very high titre and efficient gene transfer into mammalian and non-mammalian cells. Proc Natl Acad Sci U S A 90:8033–8037 [CrossRef]
    [Google Scholar]
  6. Cagnon L., Rossi J. 2000; Downregulation of the CCR5 β chemokine receptor and inhibition of HIV-1 infection by stable VA1-ribozyme chimeric transcripts. Antisense Nucleic Acid Drug Dev 10:251–261 [CrossRef]
    [Google Scholar]
  7. Cheng L., Du C., Murray D., Tong X., Zhang Y. A., Chen B. P., Hawley R. G. 1997; A GFP reporter system to assess gene transfer and expression in human hematopoietic progenitor cells. Gene Ther 4:1013–1022 [CrossRef]
    [Google Scholar]
  8. De Clercq E. 2000; Inhibition of HIV infection by bicyclams, highly potent and specific CXCR4 antagonists. Mol Pharmacol 57:833–839
    [Google Scholar]
  9. Dean M., Carrington M., Winkler C., Huttley G. A., Smith M. W., Allikmets R., Goedert J. J., Buchbinder S. P., Vittinghoff E. other authors 1996; Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273:1856–1862 [CrossRef]
    [Google Scholar]
  10. Gartner S., Markovits P., Markovitz D. M., Kaplan M. H., Gallo R. C., Popovic P. 1986; The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233:215–219 [CrossRef]
    [Google Scholar]
  11. Hawley R. G. 1994; High-titer retroviral vectors for efficient transduction of functional genes into murine hematopoietic stem cells. Ann N Y Acad Sci 716:327–330
    [Google Scholar]
  12. Huang Y., Paxton W. A., Wolinsky S. M., Neumann A. U., Zhang L., He T., Kang S., Ceradini D., Jin Z. other authors 1996; The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 2:1240–1243 [CrossRef]
    [Google Scholar]
  13. Jeang K. T., Berkhout B. 1992; Kinetics of HIV-1 long terminal repeat trans -activation. Use of intragenic ribozyme to assess rate-limiting steps. J Biol Chem 267:17891–17892
    [Google Scholar]
  14. Kawabata K., Ujikawa M., Egawa T., Kawamoto H., Tachibana K., Iizasa H., Katsura Y., Kishimoto T., Nagasawa T. 1999; A cell autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc Natl Acad Sci U S A 96:5663–5667 [CrossRef]
    [Google Scholar]
  15. Lamothe B., Joshi S. 2000; Current developments and future prospects for HIV gene therapy using interfering RNA-based strategies. Front Biosci 5:D527–D555 [CrossRef]
    [Google Scholar]
  16. Li M. J., Bauer G., Michienzi A., Yee J. K., Lee N. S., Kim J., Li S., Castanotto D., Zaia J., Rossi J. J. 2003; Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther 8:196–206 [CrossRef]
    [Google Scholar]
  17. Li M. J., Kim J., Li S., Zaia J., Yee J. K., Anderson J., Akkina R., Rossi J. J. 2005; Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther 12:900–909 [CrossRef]
    [Google Scholar]
  18. Li W., Yu M., Bai L., Bu D., Xu X. 2006; Downregulation of CCR5 expression on cells by recombinant adenovirus containing antisense CCR5, a possible measure to prevent HIV-1 from entering target cells. J Acquir Immune Defic Syndr 43:516–522
    [Google Scholar]
  19. Liu R., Paxton W. A., Choe S., Ceradini D., Martin S. R., Horuk R., MacDonald M. E., Stuhlmann H., Koup R. A., Landau N. R. 1996; Homozygous defect in HIV-1 co-receptor accounts for resistance of some multiply exposed individuals to HIV-1 infection. Cell 86:367–377 [CrossRef]
    [Google Scholar]
  20. Martinez M. A., Gutierrez A., Armand-Ugon M., Blanco J., Parera M., Gomez J., Clotet B., Este J. A. 2002; Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 16:2385–2390 [CrossRef]
    [Google Scholar]
  21. Medina M. F., Joshi S. 1999; Design and characterization of tRNA3 Lys-based hammerhead ribozymes. Nucleic Acids Res 27:1698–1708 [CrossRef]
    [Google Scholar]
  22. Michael N. L., Louie L. G., Sheppard H. W. 1997; CCR5Δ32 gene deletion in HIV-1 infected patients. Lancet 350:741–742 [CrossRef]
    [Google Scholar]
  23. Miller A. D., Buttimore C. 1986; Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 6:2895–2902
    [Google Scholar]
  24. Mok H. P., Javed S., Lever A. 2007; Stable gene expression occurs from a minority of integrated HIV-1-based vectors: transcriptional silencing is present in the majority. Gene Ther 14:741–751 [CrossRef]
    [Google Scholar]
  25. Naldini L., Blömer U., Gallay P., Ory D., Mulligan R., Gage F. H., Verma I. M., Trono D. 1996; In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267 [CrossRef]
    [Google Scholar]
  26. Onai N., Zhang Y., Yoneyama H., Kitamura T., Ishikawa S., Matsushima K. 2000; Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine. Blood 96:2074–2080
    [Google Scholar]
  27. Pannell D., Ellis J. 2001; Silencing of gene expression: implications for design of retrovirus vectors. Rev Med Virol 11:205–217 [CrossRef]
    [Google Scholar]
  28. Qin X. F., An D. S., Chen I. S., Baltimore D. 2003; Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci U S A 100:183–188 [CrossRef]
    [Google Scholar]
  29. Ramezani A., Joshi S. 1996; Comparative analysis of five highly conserved sites within the HIV-1 RNA for their susceptibility to hammerhead ribozyme-mediated cleavage in vitro and in vivo . Antisense Nucleic Acid Drug Dev 6:229–235 [CrossRef]
    [Google Scholar]
  30. Ramezani A., Ding S. F., Joshi S. 1997; Inhibition of HIV-1 replication by retroviral vectors expressing monomeric and multimeric hammerhead ribozymes. Gene Ther 4:861–867 [CrossRef]
    [Google Scholar]
  31. Ramezani A., Hawley T. S., Hawley R. G. 2000; Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol Ther 2:458–469 [CrossRef]
    [Google Scholar]
  32. Ramezani A., Ma X. Z., Nazari R., Joshi S. 2002; Development and testing of retroviral vectors expressing multimeric hammerhead ribozymes targeted against all major clades of HIV-1. Front Biosci 7:a29–a36 [CrossRef]
    [Google Scholar]
  33. Rossi J. J. 1999; The application of ribozymes to HIV infection. Curr Opin Mol Ther 1:316–322
    [Google Scholar]
  34. Rossi J. J., June C. H., Kohn D. B. 2007; Genetic therapies against HIV-1. Nat Biotechnol 25:1444–1454 [CrossRef]
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Sheppard H. W., Celum C., Michael N. L., O'Brien S., Dean M., Carrington M., Dondero D., Buchbinder S. P. 2002; HIV-1 infection in individuals with the CCR5-Δ32/Δ32 genotype: acquisition of syncytium-inducing virus at seroconversion. J Acquir Immune Defic Syndr 29:307–313 [CrossRef]
    [Google Scholar]
  37. Shiota M., Sano M., Miyagishi M., Taira K. 2004; Ribozymes: applications to functional analysis and gene discovery. J Biochem 136:133–147 [CrossRef]
    [Google Scholar]
  38. Strayer D. S., Akkina R., Bunnell B. A., Dropulic B., Planelles V., Pomerantz R. J., Rossi J. J., Zaia J. A. 2005; Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther 11:823–842 [CrossRef]
    [Google Scholar]
  39. Zou Y. R., Kottmann A. H., Kuroda M., Taniuchi I., Littman D. R. 1998; Function of the chemokine receptor CXCR4 in hematopoietic and in cerebellar development. Nature 393:595–599 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/001222-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/001222-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error