1887

Abstract

Small-ruminant lentiviruses (SRLVs) display a high genetic diversity and are currently classified into five genotypes and an increasing number of subtypes. The co-circulation of subtypes in restricted geographical regions, combined with the occurrence of cross-species infection, suggests the need for development of a large-scale screening methodology for rapid monitoring of the prevalence of the various genetic subtypes and their genetic evolution. Here, a heteroduplex mobility assay (HMA) was developed for the rapid identification of group B subtypes. The assay was validated for both the p14 nucleocapsid-coding region of the gene and the V1–V2 region of the gene using a panel of reference standards and was applied to the genetic subtyping of SRLV field isolates from five mixed flocks in France. Subtyping of 75 blood samples using the HMA revealed a preferential distribution of subtypes B1 and B2 in sheep and goats, despite direct evidence for interspecies transmission of both subtypes. Adding the HMA to the HMA provided evidence for dual infection and putative recombination between subtypes B1 and B2 in five goats, and between groups A and B in one sheep. Phylogenetic analysis revealed that 100 % (23/23) and 96.7 % (30/31) of samples were correctly classified using the and HMAs, respectively. These results indicate that dual infection and recombination may be a significant source of new variation in SRLV and provide a useful tool for the rapid genetic subtyping of SRLV isolates, which could be relevant for the development of more accurate diagnosis of prevalent SRLV strains in different countries.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/000851-0
2008-08-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/8/2020.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/000851-0&mimeType=html&fmt=ahah

References

  1. Bachmann, M. H., Mathiason-Dubard, C., Learn, G. H., Rodrigo, A. G., Sodora, D. L., Mazzetti, P., Hoover, E. A. & Mullins, J. I. ( 1997; ). Genetic diversity of feline immunodeficiency virus: dual infection, recombination, and distinct evolutionary rates among envelope sequences clades. J Virol 71, 4241–4253.
    [Google Scholar]
  2. Barros, S. C., Ramos, F., Duarte, M., Fagulha, T., Cruz, B. & Fevereiro, M. ( 2004; ). Genomic characterization of a slow/low maedi visna virus. Virus Genes 29, 199–210.[CrossRef]
    [Google Scholar]
  3. Bruett, L. & Clements, J. E. ( 2001; ). Functional murine leukaemia virus vectors pseudotyped with the visna virus envelope show expanded visna virus cell tropism. J Virol 75, 11464–11473.[CrossRef]
    [Google Scholar]
  4. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  5. Germain, K. & Valas, S. ( 2006; ). Distribution and heterogeneity of small ruminant lentivirus envelope subtypes in naturally infected French sheep. Virus Res 120, 156–162.[CrossRef]
    [Google Scholar]
  6. Gjerset, B., Storset, A. K. & Rimstad, E. ( 2006; ). Genetic diversity of small-ruminant lentiviruses: characterization of Norwegian isolates of caprine arthritis encephalitis virus. J Gen Virol 87, 573–580.[CrossRef]
    [Google Scholar]
  7. Gjerset, B., Jonassen, C. M. & Rimstad, E. ( 2007; ). Natural transmission and comparative analysis of small ruminant lentiviruses in the Norwegian sheep and goat populations. Virus Res 125, 153–161.[CrossRef]
    [Google Scholar]
  8. Grego, E., Profiti, M., Giammarioli, M., Giannino, L., Rutili, D., Woodall, C. & Rosati, S. ( 2002; ). Genetic heterogeneity of small ruminant lentiviruses involves immunodominant epitope of capsid antigen and affects sensitivity of single-strain-based immunoassay. Clin Diagn Lab Immunol 9, 828–832.
    [Google Scholar]
  9. Grego, E., Bertolotti, L., Quasso, A., Profiti, M., Lacerenza, D., Muz, D. & Rosati, S. ( 2007; ). Genetic characterization of small ruminant lentiviruses in Italian mixed flocks: evidence for a novel genotype circulating in a local goat population. J Gen Virol 88, 3423–3427.[CrossRef]
    [Google Scholar]
  10. Herrmann, L. M., Hötzel, I., Cheevers, W. P., On Top, K. P., Lewis, G. S. & Knowles, D. P. ( 2004; ). Seven new progressive pneumonia virus (OPPV) field isolates from Dubois Idaho sheep comprise part of OPPV clade II based on surface envelope glycoprotein (SU) sequences. Virus Res 102, 215–220.[CrossRef]
    [Google Scholar]
  11. Hötzel, I. & Cheevers, W. P. ( 2001; ). Host range of small ruminant lentivirus cytopathic variants determined with a selectable caprine arthritis-encephalitis virus pseudotype system. J Virol 75, 7384–7391.[CrossRef]
    [Google Scholar]
  12. Klevjer-Anderson, P., Adams, D. S., Anderson, L. W., Banks, K. L. & McGuire, T. C. ( 1984; ). A sequential study of virus expression in retrovirus-induced arthritis of goats. J Gen Virol 65, 1519–1525.[CrossRef]
    [Google Scholar]
  13. Leroux, C., Chastang, J., Greenland, T. & Mornex, J. F. ( 1997; ). Genomic heterogeneity of small ruminant lentiviruses: existence of heterogeneous populations in sheep and of the same lentiviral genotypes in sheep and goats. Arch Virol 142, 1125–1137.[CrossRef]
    [Google Scholar]
  14. Mselli-Lakhal, L., Favier, C., Leung, K., Guiguen, F., Grezel, D., Miossec, P., Mornex, J. F., Narayan, O., Querat, G. & Chebloune, Y. ( 2000; ). Lack of functional receptors is the only barrier that prevents caprine arthritis-encephalitis virus from infecting human cells. J Virol 74, 8343–8348.[CrossRef]
    [Google Scholar]
  15. Pisoni, G., Quasso, A. & Moroni, P. ( 2005; ). Phylogenetic analysis of small-ruminant lentivirus subtype B1 in mixed flocks: evidence for natural transmission from goats to sheep. Virology 339, 147–152.[CrossRef]
    [Google Scholar]
  16. Pisoni, G., Bertoni, G., Puricelli, M., Maccalli, M. & Moroni, P. ( 2007; ). Demonstration of coinfection with and recombination by caprine arthritis-encephalitis virus and maedi-visna virus in naturally infected goats. J Virol 81, 4948–4955.[CrossRef]
    [Google Scholar]
  17. Querat, G., Barban, V., Sauze, N., Filippi, P., Vigne, R., Russo, P. & Vitu, C. ( 1984; ). Highly lytic and persistent lentiviruses naturally present in sheep with progressive pneumonia are genetically distinct. J Virol 52, 672–679.
    [Google Scholar]
  18. Quinones-Mateu, M. & Arts, E. J. ( 1999; ). Recombination in HIV-1: update and implications. AIDS Rev 1, 89–100.
    [Google Scholar]
  19. Reina, R., Mora, M. I., Glaria, I., García, I., Solano, C., Luján, L., Badiola, J. J., Contreras, A., Berriatua, E. & other authors ( 2006; ). Molecular characterization and phylogenetic study of maedi visna and caprine arthritis encephalitis viral sequences in sheep and goats from Spain. Virus Res 121, 189–198.[CrossRef]
    [Google Scholar]
  20. Robertson, D. L., Sharp, M., McCutchan, F. E. & Hahn, B. H. ( 1995; ). Recombination in HIV-1. Nature 374, 124–126.
    [Google Scholar]
  21. Rolland, M., Mooney, J., Valas, S., Perrin, G. & Mamoun, R. Z. ( 2002; ). Characterization of an Irish caprine lentivirus strain: SRLV phylogeny revisited. Virus Res 85, 29–39.[CrossRef]
    [Google Scholar]
  22. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  23. Saltarelli, M., Querat, G., Konings, D. A., Vigne, R. & Clements, J. E. ( 1990; ). Nucleotide sequence and transcriptional analysis of molecular clones of CAEV which generate infectious virus. Virology 179, 347–364.[CrossRef]
    [Google Scholar]
  24. Shah, C., Böni, J., Huder, J. B., Vogt, H.-R., Mühlherr, J., Zanoni, R., Miserez, R., Lutz, H. & Schüpbach, J. ( 2004a; ). Phylogenetic analysis and reclassification of caprine and ovine lentiviruses based on 104 new isolates: evidence for regular sheep-to-goat transmission and worldwide propagation through livestock trade. Virology 319, 12–26.[CrossRef]
    [Google Scholar]
  25. Shah, C., Huder, J. B., Böni, J., Schönmann, M., Mühlherr, J., Lutz, H. & Schüpbach, J. ( 2004b; ). Direct evidence for natural transmission of small-ruminant lentiviruses of subtype A4 from goats to sheep and vice versa. J Virol 78, 7518–7522.[CrossRef]
    [Google Scholar]
  26. Tamura, K. & Nei, M. ( 1993; ). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10, 512–526.
    [Google Scholar]
  27. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  28. Troyer, J. L., Pecon-Slattery, J., Roelke, M. E., Black, L., Packer, C. & O'Brien, S. J. ( 2004; ). Patterns of feline immunodeficiency virus multiple infection and genome divergence in a free-ranging population of African lions. J Virol 78, 3777–3791.[CrossRef]
    [Google Scholar]
  29. Zanoni, R. G. ( 1998; ). Phylogenetic analysis of small ruminant lentiviruses. J Gen Virol 79, 1951–1961.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/000851-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/000851-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error