Identification and characterization of a novel envelope protein in virus Free

Abstract

Viral envelope proteins have been proposed to play significant roles in virus infection and assembly. In this study, an envelope protein gene, , was cloned and characterized from virus (RGV), a member of the family . Database searches found its homologues in all sequenced iridoviruses, and sequence alignment revealed several conserved structural features shared by virus capsid or envelope proteins: a myristoylation site, two predicted transmembrane domains and two invariant cysteine residues. Subsequently, RT-PCR and Western blot detection revealed that the transcripts encoding RGV 53R and the protein itself appeared late during infection of fathead minnow cells and that their appearance was blocked by viral DNA replication inhibitor, indicating that RGV is a late expression gene. Moreover, immunofluorescence localization found an association of 53R with virus factories in RGV-infected cells, and this association was further confirmed by expressing a 53R–GFP fusion protein in pEGFP-N3/53R-transfected cells. Furthermore, detergent extraction and Western blot detection confirmed that RGV 53R was associated with virion membrane. Therefore, the current data suggest that RGV 53R is a novel viral envelope protein and that it may play an important role in virus assembly. This is thought to be the first report on a viral envelope protein that is conserved in all sequenced iridoviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/000810-0
2008-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/8/1866.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/000810-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Ao J., Chen X. 2006; Identification and characterization of a novel gene encoding an RGD-containing protein in large yellow croaker iridovirus. Virology 355:213–222 [CrossRef]
    [Google Scholar]
  3. Chambers J., Angulo A., Amaratunga D., Guo H., Jiang Y., Wan J. S., Bittner A., Frueh K., Jackson M. R. other authors 1999; DNA microarrays of the complex human cytomegalovirus genome: profiling kinetic class with drug sensitivity of viral gene expression. J Virol 73:5757–5766
    [Google Scholar]
  4. Chazal N., Gerlier D. 2003; Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev 67:226–237 [CrossRef]
    [Google Scholar]
  5. Chen L. M., Wang F., Song W., Hew C. L. 2006; Temporal and differential gene expression of Singapore grouper iridovirus. J Gen Virol 87:2907–2915 [CrossRef]
    [Google Scholar]
  6. Cobbold C., Windsor M., Wileman T. 2001; A virally encoded chaperone specialized for folding of the major capsid protein of African swine fever virus. J Virol 75:7221–7229 [CrossRef]
    [Google Scholar]
  7. Eaton H. E., Metcalf J., Penny E., Tcherepanov V., Upton C., Brunetti C. R. 2007; Comparative genomic analysis of the family Iridoviridae : re-annotating and defining the core set of iridovirus genes. Virol J 4:11 [CrossRef]
    [Google Scholar]
  8. Ebrahimi B., Dutia B. M., Roberts K. L., Garcia-Ramirez J. J., Dickinson P., Stewart J. P., Ghazal P., Roy D. J., Nash A. A. 2003; Transcriptome profile of murine gammaherpesvirus-68 lytic infection. J Gen Virol 84:99–109 [CrossRef]
    [Google Scholar]
  9. Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. editors 2005 Virus Taxonomy: Eighth Report of the International Committee for Virus Taxonomy San Diego, CA: Elsevier Academic Press;
    [Google Scholar]
  10. He J. G., Lu L., Deng M., He H. H., Weng S. P., Wang X. H., Zhou S. Y., Long Q. X., Wang X. Z., Chan S. M. 2002; Sequence analysis of the complete genome of an iridovirus isolated from the tiger frog. Virology 292:185–197 [CrossRef]
    [Google Scholar]
  11. Huang X. H., Huang Y. H., Yuan X. P., Zhang Q. Y. 2006; Electron microscopic examination of the viromatrix of Rana grylio virus in a fish cell line. J Virol Methods 133:117–123 [CrossRef]
    [Google Scholar]
  12. Huang Y. H., Huang X. H., Gui J. F., Zhang Q. Y. 2007; Mitochondrion-mediated apoptosis induced by Rana grylio virus infection in fish cells. Apoptosis 12:1569–1577 [CrossRef]
    [Google Scholar]
  13. Lua D. T., Yasuike M., Hirono I., Aoki T. 2005; Transcription program of red sea bream iridovirus as revealed by DNA microarrays. J Virol 79:15151–15164 [CrossRef]
    [Google Scholar]
  14. Martin K. H., Grosenbach D. W., Franke C. A., Hruby D. E. 1997; Identification and analysis of three myristylated vaccinia virus late proteins. J Virol 71:5218–5226
    [Google Scholar]
  15. Nalcacioglu R., Marks H., Vlak J. M., Demirbag Z., van Oers M. M. 2003; Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes. Virology 317:321–329 [CrossRef]
    [Google Scholar]
  16. Nalcacioglu R., Ince I. A., Vlak J. M., Demirbag Z., van Oers M. M. 2007; The Chilo iridescent virus DNA polymerase promoter contains an essential AAAAT motif. J Gen Virol 88:2488–2494 [CrossRef]
    [Google Scholar]
  17. Netherton C., Moffat K., Brooks E., Wileman T. 2007; A guide to viral inclusions, membrane rearrangements, factories, and viroplasm produced during virus replication. Adv Virus Res 70:101–182
    [Google Scholar]
  18. Novoa R. R., Calderitam G., Arranz R., Fontana J., Granzow H., Risco C. 2005; Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell 97:147–172 [CrossRef]
    [Google Scholar]
  19. Ojeda S., Senkevich T. G., Moss B. 2006a; Entry of vaccinia virus and cell–cell fusion require a highly conserved cysteine-rich membrane protein encoded by the A16L gene. J Virol 80:51–61 [CrossRef]
    [Google Scholar]
  20. Ojeda S., Domi A., Moss B. 2006b; Vaccinia virus G9 protein is an essential component of the poxvirus entry-fusion complex. J Virol 80:9822–9830 [CrossRef]
    [Google Scholar]
  21. Ravanello M. P., Hruby D. E. 1994; Characterization of the vaccinia virus L1R myristylprotein as a component of the intracellular virion envelope. J Gen Virol 75:1479–1483 [CrossRef]
    [Google Scholar]
  22. Ravanello M. P., Franke C. A., Hruby D. E. 1993; An NH2-terminal peptide from the vaccinia virus L1R protein directs the myristylation and virion envelope localization of a heterologous fusion protein. J Biol Chem 268:7585–7593
    [Google Scholar]
  23. Rodríguez J. M., García-Escudero R., Salas M. L., Andrés G. 2004; African swine fever virus structural protein p54 is essential for the recruitment of envelope precursors to assembly sites. J Virol 78:4299–4313 [CrossRef]
    [Google Scholar]
  24. Sun W., Huang Y. H., Zhao Z., Gui J. F., Zhang Q. Y. 2006; Characterization of the Rana grylio virus 3 β -hydroxysteroid dehydrogenase and its novel role in suppressing virus-induced cytopathic effect. Biochem Biophys Res Commun 351:44–50 [CrossRef]
    [Google Scholar]
  25. Tan W. G., Barkman T. J., Chinchar V. G., Essani K. 2004; Comparative genomic analyses of frog virus 3, type species of the genus Ranavirus (family Iridoviridae ). Virology 323:70–84 [CrossRef]
    [Google Scholar]
  26. Williams T., Barbosa-Solomieu V., Chinchar V. G. 2005; A decade of advances in iridovirus research. Adv Virus Res 65:173–248
    [Google Scholar]
  27. Wolffe E. J., Vijaya S., Moss B. 1995; A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology 211:53–63 [CrossRef]
    [Google Scholar]
  28. Xu X., Lu J., Lu Q., Zhong H., Weng S., He J. 2008; Characterization of a membrane protein (VP001L) from infectious spleen and kidney necrosis virus (ISKNV). Virus Genes 36:157–167 [CrossRef]
    [Google Scholar]
  29. Zhang Q. Y., Li Z. Q., Gui J. F. 1999; Studies on morphogenesis and cellular interactions of Rana grylio virus in an infected fish cell line. Aquaculture 175:185–197 [CrossRef]
    [Google Scholar]
  30. Zhang Q. Y., Xiao F., Li Z. Q., Gui J. F., Mao J. H., Chinchar V. G. 2001; Characterization of an iridovirus from the cultured pig frog Rana grylio with lethal syndrome. Dis Aquat Organ 48:27–36 [CrossRef]
    [Google Scholar]
  31. Zhang Q. Y., Zhao Z., Xiao F., Li Z. Q., Gui J. F. 2006; Molecular characterization of three Rana grylio virus (RGV) isolates and Paralichthys olivaceus lymphocystis disease virus (LCDV-C) in iridoviruses. Aquaculture 251:1–10 [CrossRef]
    [Google Scholar]
  32. Zhao Z., Ke F., Gui J. F., Zhang Q. Y. 2007; Characterization of an early gene encoding for dUTPase in Rana grylio virus. Virus Res 123:128–137 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/000810-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/000810-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed