1887

Abstract

Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, replicates primarily at the endoplasmic reticulum and thereby triggers apoptosis of infected cells. This study investigated the hierarchical activation of the caspase network induced by JEV infection. It was found that JEV activated the initiators caspase-8 and -9, as well as effector caspase-3, in infected baby hamster kidney and mouse neuroblastoma (N18) cells. In neuronal N18 cells, JEV infection triggered cytochrome release from mitochondria, which in turn activated caspase-9 and -3. Treatment of JEV-infected N18 cells with cyclosporin A or ruthenium red, which attenuate mitochondrial injuries, blocked activation of caspase-9 or -3, typifying that, in neuronal cells, this apoptosis involves the mitochondrial pathway. Alternatively, in caspase-3-deficient MCF-7 cells, JEV persisted and readily triggered a typical apoptotic response, including cytochrome release and full activation of caspase-9 and -8 along with caspase-6, indicating that JEV did not require caspase-3 to manifest caspase-8 activation and apoptosis. Interestingly, a Fas-associated death-domain-containing protein (FADD) dominant-negative mutant, which interfered with transmission of the extracellular death signals into cells through the Fas/tumour necrosis factor (TNF) receptor, failed to block JEV-induced apoptosis and caspase-8 activation, implying that receptor oligomerization of the Fas/TNF pathway might not participate in JEV-induced apoptosis. Taken together, these results illustrate that JEV infection triggers caspase cascades involving the initiators caspase-8 and -9, probably through FADD-independent but mitochondrion-dependent pathways.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/000182-0
2008-08-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/8/1930.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/000182-0&mimeType=html&fmt=ahah

References

  1. Adams, J. M. & Cory, S. ( 2002; ). Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 14, 715–720.[CrossRef]
    [Google Scholar]
  2. Bitzer, M., Prinz, F., Bauer, M., Spiegel, M., Neubert, W. J., Gregor, M., Schulze-Osthoff, K. & Lauer, U. ( 1999; ). Sendai virus infection induces apoptosis through activation of caspase-8 (FLICE) and caspase-3 (CPP32). J Virol 73, 702–708.
    [Google Scholar]
  3. Cai, J. & Jones, D. P. ( 1998; ). Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem 273, 11401–11404.[CrossRef]
    [Google Scholar]
  4. Catteau, A., Kalinina, O., Wagner, M. C., Deubel, V., Courageot, M. P. & Despres, P. ( 2003a; ). Dengue virus M protein contains a proapoptotic sequence referred to as ApoptoM. J Gen Virol 84, 2781–2793.[CrossRef]
    [Google Scholar]
  5. Catteau, A., Roue, G., Yuste, V. J., Susin, S. A. & Despres, P. ( 2003b; ). Expression of dengue ApoptoM sequence results in disruption of mitochondrial potential and caspase activation. Biochimie 85, 789–793.[CrossRef]
    [Google Scholar]
  6. Chen, Y. & Lai, M. Z. ( 2001; ). c-Jun NH2-terminal kinase activation leads to a FADD-dependent but Fas ligand-independent cell death in Jurkat T cells. J Biol Chem 276, 8350–8357.[CrossRef]
    [Google Scholar]
  7. Chen, M. & Wang, J. ( 2002; ). Initiator caspases in apoptosis signaling pathways. Apoptosis 7, 313–319.[CrossRef]
    [Google Scholar]
  8. Chen, L. K., Lin, Y. L., Liao, C. L., Lin, C. G., Huang, Y. L., Yeh, C. T., Lai, S. C., Jan, J. T. & Chin, C. ( 1996; ). Generation and characterization of organ-tropism mutants of Japanese encephalitis virus in vivo and in vitro. Virology 223, 79–88.[CrossRef]
    [Google Scholar]
  9. Chen, C. J., Liao, S. L., Kuo, M. D. & Wang, Y. M. ( 2000; ). Astrocytic alteration induced by Japanese encephalitis virus infection. Neuroreport 11, 1933–1937.[CrossRef]
    [Google Scholar]
  10. Chen, C. J., Chen, J. H., Chen, S. Y., Liao, S. L. & Raung, S. L. ( 2004; ). Upregulation of RANTES gene expression in neuroglia by Japanese encephalitis virus infection. J Virol 78, 12107–12119.[CrossRef]
    [Google Scholar]
  11. Cheng, E. H., Kirsch, D. G., Clem, R. J., Ravi, R., Kastan, M. B., Bedi, A., Ueno, K. & Hardwick, J. M. ( 1997; ). Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278, 1966–1968.[CrossRef]
    [Google Scholar]
  12. Clarke, P. & Tyler, K. L. ( 2003; ). Reovirus-induced apoptosis: a minireview. Apoptosis 8, 141–150.[CrossRef]
    [Google Scholar]
  13. Clem, R. J., Cheng, E. H., Karp, C. L., Kirsch, D. G., Ueno, K., Takahashi, A., Kastan, M. B., Griffin, D. E., Earnshaw, W. C. & other authors ( 1998; ). Modulation of cell death by Bcl-xL through caspase interaction. Proc Natl Acad Sci U S A 95, 554–559.[CrossRef]
    [Google Scholar]
  14. Cohen, G. M. ( 1997; ). Caspases: the executioners of apoptosis. Biochem J 326, 1–16.
    [Google Scholar]
  15. Cory, S. & Adams, J. M. ( 2002; ). The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2, 647–656.[CrossRef]
    [Google Scholar]
  16. Datta, R., Kojima, H., Banach, D., Bump, N. J., Talanian, R. V., Alnemri, E. S., Weichselbaum, R. R., Wong, W. W. & Kufe, D. W. ( 1997; ). Activation of a CrmA-insensitive, p35-sensitive pathway in ionizing radiation-induced apoptosis. J Biol Chem 272, 1965–1969.[CrossRef]
    [Google Scholar]
  17. Deszcz, L., Gaudernak, E., Kuechler, E. & Seipelt, J. ( 2005; ). Apoptotic events induced by human rhinovirus infection. J Gen Virol 86, 1379–1389.[CrossRef]
    [Google Scholar]
  18. Dorstyn, L. & Kumar, S. ( 1997; ). Differential inhibitory effects of CrmA, P35, IAP and three mammalian IAP homologues on apoptosis in NIH3T3 cells following various death stimuli. Cell Death Differ 4, 570–579.[CrossRef]
    [Google Scholar]
  19. Duncan, R., Muller, J., Lee, N., Esmaili, A. & Nakhasi, H. L. ( 1999; ). Rubella virus-induced apoptosis varies among cell lines and is modulated by Bcl-XL and caspase inhibitors. Virology 255, 117–128.[CrossRef]
    [Google Scholar]
  20. Grandgirard, D., Studer, E., Monney, L., Belser, T., Fellay, I., Borner, C. & Michel, M. R. ( 1998; ). Alphaviruses induce apoptosis in Bcl-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bcl-2. EMBO J 17, 1268–1278.[CrossRef]
    [Google Scholar]
  21. Green, D. R. & Kroemer, G. ( 2004; ). The pathophysiology of mitochondrial cell death. Science 305, 626–629.[CrossRef]
    [Google Scholar]
  22. Halestrap, A. P., McStay, G. P. & Clarke, S. J. ( 2002; ). The permeability transition pore complex: another view. Biochimie 84, 153–166.[CrossRef]
    [Google Scholar]
  23. Hinshaw, V. S., Olsen, C. W., Dybdahl-Sissoko, N. & Evans, D. ( 1994; ). Apoptosis: a mechanism of cell killing by influenza A and B viruses. J Virol 68, 3667–3673.
    [Google Scholar]
  24. Kessel, D., Castelli, M. & Reiners, J. J. ( 2005; ). Ruthenium red-mediated suppression of Bcl-2 loss and Ca2+ release initiated by photodamage to the endoplasmic reticulum: scavenging of reactive oxygen species. Cell Death Differ 12, 502–511.[CrossRef]
    [Google Scholar]
  25. Kleinschmidt, M. C., Michaelis, M., Ogbomo, H., Doerr, H. W. & Cinatl, J., Jr ( 2007; ). Inhibition of apoptosis prevents West Nile virus induced cell death. BMC Microbiol 7, 49 [CrossRef]
    [Google Scholar]
  26. Kothakota, S., Azuma, T., Reinhard, C., Klippel, A., Tang, J., Chu, K., McGarry, T. J., Kirschner, M. W., Koths, K. & other authors ( 1997; ). Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294–298.[CrossRef]
    [Google Scholar]
  27. Lakhani, S. A., Masud, A., Kuida, K., Porter, G. A., Jr, Booth, C. J., Mehal, W. Z., Inayat, I. & Flavell, R. A. ( 2006; ). Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311, 847–851.[CrossRef]
    [Google Scholar]
  28. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G. & Earnshaw, W. C. ( 1994; ). Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346–347.[CrossRef]
    [Google Scholar]
  29. Lee, C. J., Liao, C. L. & Lin, Y. L. ( 2005; ). Flavivirus activates phosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection. J Virol 79, 8388–8399.[CrossRef]
    [Google Scholar]
  30. Levine, B., Huang, Q., Isaacs, J. T., Reed, J. C., Griffin, D. E. & Hardwick, J. M. ( 1993; ). Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature 361, 739–742.[CrossRef]
    [Google Scholar]
  31. Li, H., Zhu, H., Xu, C. J. & Yuan, J. ( 1998; ). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501.[CrossRef]
    [Google Scholar]
  32. Liao, C. L., Lin, Y. L., Wang, J. J., Huang, Y. L., Yeh, C. T., Ma, S. H. & Chen, L. K. ( 1997; ). Effect of enforced expression of human bcl-2 on Japanese encephalitis virus-induced apoptosis in cultured cells. J Virol 71, 5963–5971.
    [Google Scholar]
  33. Liao, C. L., Lin, Y. L., Shen, S. C., Shen, J. Y., Su, H. L., Huang, Y. L., Ma, S. H., Sun, Y. C., Chen, K. P. & Chen, L. K. ( 1998; ). Antiapoptotic but not antiviral function of human bcl-2 assists establishment of Japanese encephalitis virus persistence in cultured cells. J Virol 72, 9844–9854.
    [Google Scholar]
  34. Liao, S. L., Raung, S. L. & Chen, C. J. ( 2002; ). Japanese encephalitis virus stimulates superoxide dismutase activity in rat glial cultures. Neurosci Lett 324, 133–136.[CrossRef]
    [Google Scholar]
  35. Lin, R. J., Liao, C. L. & Lin, Y. L. ( 2004; ). Replication-incompetent virions of Japanese encephalitis virus trigger neuronal cell death by oxidative stress in a culture system. J Gen Virol 85, 521–533.[CrossRef]
    [Google Scholar]
  36. Liu, Y., Pu, Y. & Zhang, X. ( 2006; ). Role of the mitochondrial signaling pathway in murine coronavirus-induced oligodendrocyte apoptosis. J Virol 80, 395–403.[CrossRef]
    [Google Scholar]
  37. Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S. & Dixit, V. M. ( 1998; ). An induced proximity model for caspase-8 activation. J Biol Chem 273, 2926–2930.[CrossRef]
    [Google Scholar]
  38. Newton, K., Kurts, C., Harris, A. W. & Strasser, A. ( 2001; ). Effects of a dominant interfering mutant of FADD on signal transduction in activated T cells. Curr Biol 11, 273–276.
    [Google Scholar]
  39. Pan, G., O'Rourke, K., Chinnaiyan, A. M., Gentz, R., Ebner, R., Ni, J. & Dixit, V. M. ( 1997; ). The receptor for the cytotoxic ligand TRAIL. Science 276, 111–113.[CrossRef]
    [Google Scholar]
  40. Pastorino, J. G., Chen, S. T., Tafani, M., Snyder, J. W. & Farber, J. L. ( 1998; ). The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 273, 7770–7775.[CrossRef]
    [Google Scholar]
  41. Peter, M. E. ( 2004; ). The flip side of FLIP. Biochem J 382, e1–e3.[CrossRef]
    [Google Scholar]
  42. Ramanathan, M. P., Chambers, J. A., Pankhong, P., Chattergoon, M., Attatippaholkun, W., Dang, K., Shah, N. & Weiner, D. B. ( 2006; ). Host cell killing by the West Nile virus NS2B–NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway. Virology 345, 56–72.[CrossRef]
    [Google Scholar]
  43. Rodgers, S. E., Barton, E. S., Oberhaus, S. M., Pike, B., Gibson, C. A., Tyler, K. L. & Dermody, T. S. ( 1997; ). Reovirus-induced apoptosis of MDCK cells is not linked to viral yield and is blocked by Bcl-2. J Virol 71, 2540–2546.
    [Google Scholar]
  44. Saelens, X., Festjens, N., Vande Walle, L., van Gurp, M., van Loo, G. & Vandenabeele, P. ( 2004; ). Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861–2874.[CrossRef]
    [Google Scholar]
  45. Scallan, M. F., Allsopp, T. E. & Fazakerley, J. K. ( 1997; ). bcl-2 acts early to restrict Semliki Forest virus replication and delays virus-induced programmed cell death. J Virol 71, 1583–1590.
    [Google Scholar]
  46. Schrantz, N., Bourgeade, M. F., Mouhamad, S., Leca, G., Sharma, S. & Vazquez, A. ( 2001; ). p38-mediated regulation of an Fas-associated death domain protein-independent pathway leading to caspase-8 activation during TGFβ-induced apoptosis in human Burkitt lymphoma B cells BL41. Mol Biol Cell 12, 3139–3151.[CrossRef]
    [Google Scholar]
  47. Shafee, N. & AbuBakar, S. ( 2003; ). Dengue virus type 2 NS3 protease and NS2B–NS3 protease precursor induce apoptosis. J Gen Virol 84, 2191–2195.[CrossRef]
    [Google Scholar]
  48. Sheridan, J. P., Marsters, S. A., Pitti, R. M., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C. L., Baker, K. & other authors ( 1997; ). Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818–821.[CrossRef]
    [Google Scholar]
  49. Slee, E. A., Harte, M. T., Kluck, R. M., Wolf, B. B., Casiano, C. A., Newmeyer, D. D., Wang, H. G., Reed, J. C., Nicholson, D. W. & other authors ( 1999; ). Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144, 281–292.[CrossRef]
    [Google Scholar]
  50. Su, H. L., Liao, C. L. & Lin, Y. L. ( 2002; ). Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J Virol 76, 4162–4171.[CrossRef]
    [Google Scholar]
  51. Tan, S., Sagara, Y., Liu, Y., Maher, P. & Schubert, D. ( 1998; ). The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141, 1423–1432.[CrossRef]
    [Google Scholar]
  52. Tschopp, J., Thome, M., Hofmann, K. & Meinl, E. ( 1998; ). The fight of viruses against apoptosis. Curr Opin Genet Dev 8, 82–87.[CrossRef]
    [Google Scholar]
  53. Ubol, S., Tucker, P. C., Griffin, D. E. & Hardwick, J. M. ( 1994; ). Neurovirulent strains of alphavirus induce apoptosis in bcl-2-expressing cells: role of a single amino acid change in the E2 glycoprotein. Proc Natl Acad Sci U S A 91, 5202–5206.[CrossRef]
    [Google Scholar]
  54. Villa, P., Kaufmann, S. H. & Earnshaw, W. C. ( 1997; ). Caspases and caspase inhibitors. Trends Biochem Sci 22, 388–393.[CrossRef]
    [Google Scholar]
  55. Walsh, C. M., Wen, B. G., Chinnaiyan, A. M., O'Rourke, K., Dixit, V. M. & Hedrick, S. M. ( 1998; ). A role for FADD in T cell activation and development. Immunity 8, 439–449.[CrossRef]
    [Google Scholar]
  56. Wesselborg, S., Engels, I. H., Rossmann, E., Los, M. & Schulze-Osthoff, K. ( 1999; ). Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood 93, 3053–3063.
    [Google Scholar]
  57. Yang, X. H., Sladek, T. L., Liu, X., Butler, B. R., Froelich, C. J. & Thor, A. D. ( 2001; ). Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res 61, 348–354.
    [Google Scholar]
  58. Yeh, J. H., Hsu, S. C., Han, S. H. & Lai, M. Z. ( 1998; ). Mitogen-activated protein kinase kinase antagonized Fas-associated death domain protein-mediated apoptosis by induced FLICE-inhibitory protein expression. J Exp Med 188, 1795–1802.[CrossRef]
    [Google Scholar]
  59. Yu, S. W., Wang, H., Poitras, M. F., Coombs, C., Bowers, W. J., Federoff, H. J., Poirier, G. G., Dawson, T. M. & Dawson, V. L. ( 2002; ). Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297, 259–263.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/000182-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/000182-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error