Rice black streaked dwarf virus P9-1, an -helical protein, self-interacts and forms viroplasms Free

Abstract

Replication and assembly of viruses from the family are thought to take place in discrete cytoplasmic inclusion bodies, commonly called viral factories or viroplasms. Rice black streaked dwarf virus (RBSDV) P9-1, a non-structural protein, has been confirmed to accumulate in these intracellular viroplasms in infected plants and insects. However, little is known about its exact function. In this study, P9-1 of RBSDV-Baoding was expressed in as a His-tagged fusion protein and analysed using biochemical and biophysical techniques. Mass spectrometry and circular dichroism spectroscopy studies showed that P9-1 was a thermostable, -helical protein with a molecular mass of 41.804 kDa. A combination of gel-filtration chromatography, chemical cross-linking and a yeast two-hybrid assay was used to demonstrate that P9-1 had the intrinsic ability to self-interact and form homodimers and . Furthermore, when transiently expressed in protoplasts, P9-1 formed large, discrete viroplasm-like structures in the absence of infection or other RBSDV proteins. Taken together, these results suggest that P9-1 is the minimal viral component required for viroplasm formation and that it plays an important role in the early stages of the virus life cycle by forming intracellular viroplasms that serve as the sites of virus replication and assembly.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/000109-0
2008-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/7/1770.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/000109-0&mimeType=html&fmt=ahah

References

  1. Abel S., Theologis A. 1994; Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427 [CrossRef]
    [Google Scholar]
  2. Bai F. W., Yan J., Qu Z. C., Zhang H. W., Xu J., Ye M. M., Shen D. L. 2002; Phylogenetic analysis reveals that a dwarfing disease on different cereal crops in China is due to rice black streaked dwarf virus (RBSDV). Virus Genes 25:201–206 [CrossRef]
    [Google Scholar]
  3. Barr D. P., Gunther M. R., Deterding L. J., Tomer K. B., Mason R. P. 1996; ESR spin-trapping of a protein-derived tyrosyl radical from the reaction of cytochrome c with hydrogen peroxide. J Biol Chem 271:15498–15503 [CrossRef]
    [Google Scholar]
  4. Brookes S. M., Hyatt A. D., Eaton B. T. 1993; Characterization of virus inclusion bodies in bluetongue virus-infected cells. J Gen Virol 74:525–530 [CrossRef]
    [Google Scholar]
  5. Bucher M. H., Evdokimov A. G., Waugh D. S. 2002; Differential effects of short affinity tags on the crystallization of Pyrococcus furiosus maltodextrin-binding protein. Acta Crystallogr D Biol Crystallogr 58:392–397 [CrossRef]
    [Google Scholar]
  6. Burkhard P., Stetefeld J., Strelkov S. V. 2001; Coiled coils: a highly versatile protein folding motif. Trends Cell Biol 11:82–88 [CrossRef]
    [Google Scholar]
  7. Dales S. 1963; Association between the spindle apparatus and reovirus. Proc Natl Acad Sci U S A 50:268–275 [CrossRef]
    [Google Scholar]
  8. Dales S., Gomatos P. J., Hsu K. C. 1965; The uptake and development of reovirus in strain L cells followed with labelled viral ribonucleic acid and ferritin–antibody complexes. Virology 25:193–211 [CrossRef]
    [Google Scholar]
  9. Fabbretti E., Afrikanova I., Vascotto F., Burrone O. R. 1999; Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo . J Gen Virol 80:333–339
    [Google Scholar]
  10. Fang S., Yu J., Feng J., Han C., Li D., Liu Y. 2001; Identification of rice black-streaked dwarf fijivirus in maize with rough dwarf disease in China. Arch Virol 146:167–170 [CrossRef]
    [Google Scholar]
  11. Fukushi T., Shikata E., Kimura I. 1962; Some morphological characters of rice dwarf virus. Virology 18:192–205 [CrossRef]
    [Google Scholar]
  12. Haas M., Geldreich A., Bureau M., Dupuis L., Leh V., Vetter G., Kobayashi K., Hohn T., Ryabova L. other authors 2005; The open reading frame VI product of Cauliflower mosaic virus is a nucleocytoplasmic protein: its N terminus mediates its nuclear export and formation of electron-dense viroplasms. Plant Cell 17:927–943 [CrossRef]
    [Google Scholar]
  13. Harada S., Yalamanchili R., Kieff E. 2001; Epstein–Barr virus nuclear protein 2 has at least two N-terminal domains that mediate self-association. J Virol 75:2482–2487 [CrossRef]
    [Google Scholar]
  14. Isogai M., Uyeda I., Lee B. C. 1998; Detection and assignment of proteins encoded by rice black streaked dwarf fijivirus S7, S8, S9 and S10. J Gen Virol 79:1487–1494
    [Google Scholar]
  15. Khu Y. L., Koh E., Lim S. P., Tan Y. H., Brenner S., Lim S. G., Hong W. J., Goh P. Y. 2001; Mutations that affect dimer formation and helicase activity of the hepatitis C virus helicase. J Virol 75:205–214 [CrossRef]
    [Google Scholar]
  16. Lupas A. 1996; Coiled coils: new structures and new functions. Trends Biochem Sci 21:375–382 [CrossRef]
    [Google Scholar]
  17. Mohanty A. K., Wiener M. C. 2004; Membrane protein expression and production: effects of polyhistidine tag length and position. Protein Expr Purif 33:311–325 [CrossRef]
    [Google Scholar]
  18. Nakai K., Okamoto T., Kimura-Someya T., Ishii K., Lim C. K., Tani H., Matsuo E., Abe T., Mori Y. other authors 2006; Oligomerization of hepatitis C virus core protein is crucial for interaction with the cytoplasmic domain of E1 envelope protein. J Virol 80:11265–11273 [CrossRef]
    [Google Scholar]
  19. Petrie B. L., Greenberg H. B., Graham D. Y., Estes M. K. 1984; Ultrastructural localization of rotavirus antigens using colloidal gold. Virus Res 1:133–152 [CrossRef]
    [Google Scholar]
  20. Reyes L. F., Sommer C. A., Beltramini L. M., Henrique-Silva F. 2006; Expression, purification, and structural analysis of HIS UBE2G2 (human ubiquitin-conjugating enzyme). Protein Expr Purif 45:324–328 [CrossRef]
    [Google Scholar]
  21. Rhim J. S., Jordan L. E., Mayor H. D. 1962; Cytochemical, fluorescent-antibody and electron microscopic studies on the growth of reovirus (ECHO 10) in tissue culture. Virology 17:342–355 [CrossRef]
    [Google Scholar]
  22. Shikata E., Kitagawa Y. 1977; Rice black-streaked dwarf virus: its properties, morphology and intracellular localization. Virology 77:826–842 [CrossRef]
    [Google Scholar]
  23. Silverstein S. C., Schur P. H. 1970; Immunofluorescent localization of double-stranded RNA in reovirus-infected cells. Virology 41:564–566 [CrossRef]
    [Google Scholar]
  24. Spendlove R. S., Lennette E. H., Chin J. N., Knight C. O. 1964; Effect of antimitotic agents on intracellular reovirus antigen. Cancer Res 24:1826–1833
    [Google Scholar]
  25. Supyani S., Hillman B. I., Suzuki N. 2007; Baculovirus expression of the 11 mycoreovirus-1 genome segments and identification of the guanylyltransferase-encoding segment. J Gen Virol 88:342–350 [CrossRef]
    [Google Scholar]
  26. Takemoto Y., Hibi T. 2005; Self-interaction of ORF II protein through the leucine zipper is essential for Soybean chlorotic mottle virus infectivity. Virology 332:199–205 [CrossRef]
    [Google Scholar]
  27. Tanaka M., Yokoyama A., Igarashi M., Matsuda G., Kato K., Kanamori M., Hirai K., Kawaguchi Y., Yamanashi Y. 2002; Conserved region CR2 of Epstein–Barr virus nuclear antigen leader protein is a multifunctional domain that mediates self-association as well as nuclear localization and nuclear matrix association. J Virol 76:1025–1032 [CrossRef]
    [Google Scholar]
  28. Touris-Otero F., Martínez-Costas J., Vakharia V. N., Benavente J. 2004; Avian reovirus nonstructural protein μNS forms viroplasm-like inclusions and recruits protein σ NS to these structures. Virology 319:94–106 [CrossRef]
    [Google Scholar]
  29. Uyeda I., Lee B. C., Ando Y., Suga H., He Y. K., Isogai M. 1998; Reovirus isolation and RNA extraction. Methods Mol Biol 81:65–75
    [Google Scholar]
  30. Wang Z. H., Fang S. G., Xu J. L., Sun L. Y., Li D. W., Yu J. L. 2003; Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease. Virus Genes 27:163–168 [CrossRef]
    [Google Scholar]
  31. Wei T., Shimizu T., Hagiwara K., Kikuchi A., Moriyasu Y., Suzuki N., Chen H., Omura T. 2006; Pns12 protein of Rice dwarf virus is essential for formation of viroplasms and nucleation of viral-assembly complexes. J Gen Virol 87:429–438 [CrossRef]
    [Google Scholar]
  32. Zhang H. M., Chen J. P., Adams M. J. 2001; Molecular characterisation of segments 1 to 6 of Rice black-streaked dwarf virus from China provides the complete genome. Arch Virol 146:2331–2339 [CrossRef]
    [Google Scholar]
  33. Zhang L. D., Wang Z. H., Wang X. B., Zhang W. H., Li D. W., Han C. G., Zhai Y. F., Yu J. L. 2005; Two virus-encoded RNA silencing suppressors, P14 of Beet necrotic yellow vein virus and S6 of Rice black streak dwarf virus . Chin Sci Bull 50:305–310
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/000109-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/000109-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed