1887

Abstract

The L-X-C-X-E pRB-binding motif of papillomavirus (PV) E7 proteins has been implicated in the immortalization and transformation of the host cell. However, sequencing of the complete genomes of bovine papillomavirus type 3 (BPV-3), bovine papillomavirus type 5 (BPV-5), equine papillomavirus (EQPV) and reindeer () papillomavirus (RPV) supports the notion that the pRB-binding motif is not ubiquitous among E7 proteins in the PV proteome. Key among the animal groups that lack the pRB-binding domain are the artiodactyl PVs, including European elk PV (EEPV), deer PV (DPV), reindeer PV (RPV), ovine PVs types 1 and 2 (OvPV-1 and -2) and bovine PVs 1, 2 and 5 (BPV-1, -2 and -5). Whereas the presence of the pRB-binding domain is normally associated with papillomas, the artiodactyl PVs are marked by the development of fibropapillomas on infection. Previous studies emphasized the role of E5 in the pathogenic mechanism of fibropapilloma development, but correlation between the lack of an E7 pRB-binding domain and the unique pathology of the artiodactyl PVs suggests a more complicated mechanism and an early evolutionary divergence from a pRB-binding ancestor.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19765-0
2004-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/5/vir851243.html?itemId=/content/journal/jgv/10.1099/vir.0.19765-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Bernard H. U., Chan S. Y. 1997; Animal papillomaviruses. In Human Papillomaviruses Compendium pp  100–109 Los Alamos, NM: Theoretical Biology and Biophysics, Los Alamos National Laboratory;
    [Google Scholar]
  3. Bloch N., Breen M. 1997; Bovine papillomavirus type 5: partial sequence and comparison with other bovine papillomaviruses. Virus Genes 14:171–174
    [Google Scholar]
  4. Bloch N., Sutton R. H., Spradbrow P. B. 1994; Bovine cutaneous papillomas associated with bovine papillomavirus type 5. Arch Virol 138:373–377
    [Google Scholar]
  5. Bohl J., Hull B., Vande Pol S. B. 2001; Cooperative transformation and coexpression of bovine papillomavirus type 1 E5 and E7 proteins. J Virol 75:513–521
    [Google Scholar]
  6. Caldeira S., de Villiers E. M., Tommasino M. 2000; Human papillomavirus E7 proteins stimulate proliferation independently of their ability to associate with retinoblastoma protein. Oncogene 19:821–826
    [Google Scholar]
  7. Campo M. S., Coggins L. W. 1982; Molecular cloning of bovine papillomavirus genomes and comparison of their sequence homologies by heteroduplex mapping. J Gen Virol 63:255–264
    [Google Scholar]
  8. Campo M. S., Moar M. H., Laird H. M., Jarrett W. F. 1981; Molecular heterogeneity and lesion site specificity of cutaneous bovine papillomaviruses. Virology 113:323–335
    [Google Scholar]
  9. Chan S.-Y., Delius H., Halpern A. L., Bernard H.-U. 1995; Analysis of genomic sequences of 95 papillomavirus types: uniting typing, phylogeny, and taxonomy. J Virol 69:3074–3083
    [Google Scholar]
  10. Chan H. M., Smith L., La Thangue N. B. 2001; Role of LXCXE motif-dependent interactions in the activity of the retinoblastoma protein. Oncogene 20:6152–6163
    [Google Scholar]
  11. Cheville N. F., Olson C. 1964; Cytology of the canine oral papilloma. Am J Pathol 45:849–872
    [Google Scholar]
  12. Dahiya A., Gavin M. R., Luo R. X., Dean D. C. 2000; Role of the LXCXE binding site in Rb function. Mol Cell Biol 20:6799–6805
    [Google Scholar]
  13. Delius H., Hofmann B. 1994; Primer-directed sequencing of human papillomavirus types. In Human Pathogenic Papillomaviruses pp  13–31 Edited by zur Hausen H. Berlin: Springer-Verlag;
    [Google Scholar]
  14. de Villiers E.-M. 2001; Taxonomic classification of papillomaviruses. Papillomavirus Rep 12:57–63
    [Google Scholar]
  15. Dick F. A., Dyson N. J. 2002; Three regions of the pRB pocket domain affect its inactivation by human papillomavirus E7 proteins. J Virol 76:6224–6234
    [Google Scholar]
  16. DiMaio D., Mattoon D. 2001; Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene 20:7866–7873
    [Google Scholar]
  17. Egawa K., Delius H., Matsukura T., Kawashima M., de Villiers E. M. 1993; Two novel types of human papillomavirus, HPV-63 and HPV-65: comparisons of their clinical and histological features and DNA sequences to other HPV types. Virology 194:789–799
    [Google Scholar]
  18. Eriksson A., Stewart A. C., Moreno-Lopez J., Pettersson U. 1994; The genomes of the animal papillomaviruses European elk papillomavirus, deer papillomavirus, and reindeer papillomavirus contain a novel transforming gene (E9) near the early polyadenylation site. J Virol 68:8365–8373
    [Google Scholar]
  19. Gissmann L., Diehl V., Schultz-Coulon H. J., zur Hausen H. 1982; Molecular cloning and characterization of human papilloma virus DNA derived from a laryngeal papilloma. J Virol 44:393–400
    [Google Scholar]
  20. Goldstein D. J., Finbow M. E., Andresson T., McLean P., Smith K., Bubb V., Schlegel R. 1991; Bovine papillomavirus E5 oncoprotein binds to the 16K component of vacuolar H+-ATPases. Nature 352:347–349
    [Google Scholar]
  21. Grossman S. R., Laimins L. A. 1989; E6 protein of human papillomavirus type 18 binds zinc. Oncogene 4:1089–1093
    [Google Scholar]
  22. Hamada M., Oyamada T., Yoshikawa H., Yoshikawa T., Itakura C. 1990; Histopathological development of equine cutaneous papillomas. J Comp Pathol 102:393–403
    [Google Scholar]
  23. Higgins D. G., Sharp P. M. 1988; clustal: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244
    [Google Scholar]
  24. Huelsenbeck J. P., Ronquist F. 2001; mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755
    [Google Scholar]
  25. Jackson M. E., Pennie W. D., McCaffery R. E., Smith K. T., Grindlay G. J., Campo M. S. 1991; The B subgroup bovine papillomaviruses lack an identifiable E6 open reading frame. Mol Carcinog 4:382–387
    [Google Scholar]
  26. Jarrett W. F., Campo M. S., O'Neil B. W., Laird H. M., Coggins L. W. 1984; A novel bovine papillomavirus (BPV-6) causing true epithelial papillomas of the mammary gland skin: a member of a proposed new BPV subgroup. Virology 136:255–264
    [Google Scholar]
  27. Maddison D. R. 1991; The discovery and importance of multiple islands of most parsimonious trees. Syst Zool 40:315–328
    [Google Scholar]
  28. Maddison W. P., Maddison D. R. 1992; macclade: analysis of phylogeny and character evolution. Version 3.0. Massachusetts: Sinauer Associates;
  29. Mietz J. A., Unger T., Huibregtse J. M., Howley P. M. 1992; The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO J 11:5013–5020
    [Google Scholar]
  30. Moreno-Lopez J., Ahola H., Eriksson A., Bergman P., Pettersson U. 1987; Reindeer papillomavirus transforming properties correlate with a highly conserved E5 region. J Virol 61:3394–3400
    [Google Scholar]
  31. Morgan I., Campo M. S. 2000; Recent developments in bovine papillomaviruses. Papillomavirus Rep 11:127–132
    [Google Scholar]
  32. Munger K., Howley P. M. 2002; Human papillomavirus immortalization and transformation functions. Virus Res 89:213–228
    [Google Scholar]
  33. Munger K., Basile J. R., Duensing S., Eichten A., Gonzalez S. L., Grace M., Zacny V. L. 2001; Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 20:7888–7898
    [Google Scholar]
  34. Myers G. 1994; Analyses. In Human Papillomaviruses Compendium pp  1–21 Los Alamos, NM: Theoretical Biology and Biophysics, Los Alamos National Laboratory;
    [Google Scholar]
  35. Nakahara T., Nishimura A., Tanaka M., Ueno T., Ishimoto A., Sakai H. 2002; Modulation of the cell division cycle by human papillomavirus type 18 E4. J Virol 76:10914–10920
    [Google Scholar]
  36. Neary K., DiMaio D. 1989; Open reading frames E6 and E7 of bovine papillomavirus type 1 are both required for full transformation of mouse C127 cells. J Virol 63:259–266
    [Google Scholar]
  37. O'Banion M. K., Reichmann M. E., Sundberg J. P. 1986; Cloning and characterization of an equine cutaneous papillomavirus. Virology 152:100–109
    [Google Scholar]
  38. O'Brien V., Ashrafi G. H., Grindlay G. J., Anderson R., Campo M. S. 1999; A mutational analysis of the transforming functions of the E8 protein of bovine papillomavirus type 4. Virology 255:385–394
    [Google Scholar]
  39. Patel K. R., Smith K. T., Campo M. S. 1987; The nucleotide sequence and genome organization of bovine papillomavirus type 4. J Gen Virol 68:2117–2128
    [Google Scholar]
  40. Petti L. M., Ray F. A. 2000; Transformation of mortal human fibroblasts and activation of a growth inhibitory pathway by the bovine papillomavirus E5 oncoprotein. Cell Growth Differ 11:395–408
    [Google Scholar]
  41. Pfister H., Linz U., Gissmann L., Huchthausen B., Hoffmann D., Zur Hausen H. 1979; Partial characterization of a new type of bovine papilloma viruses. Virology 96:1–8
    [Google Scholar]
  42. Scheffner M., Romanczuk H., Munger K., Huibregtse J. M., Mietz J. A., Howley P. M. 1994; Functions of human papillomavirus proteins. Curr Top Microbiol Immunol 186:83–99
    [Google Scholar]
  43. Stajich J. E., Block D., Boulez K. 18 other authors 2002; The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12:1611–1618
    [Google Scholar]
  44. Sundberg J. P., O'Banion M. K. 1989; Animal papillomaviruses associated with malignant tumors. Adv Viral Oncol 8:55–71
    [Google Scholar]
  45. Sundberg J. P., Chiodini R. J., Nielsen S. W. 1985; Transmission of the white-tailed deer cutaneous fibroma. Am J Vet Res 46:1150–1154
    [Google Scholar]
  46. Sundberg J. P., van Ranst M., Burk R. D., Jenson A. B. 1996; The nonhuman (animal) papillomaviruses: host range, epitope conservation, and molecular diversity. In Human Papillomavirus Infections in Dermatovenereology pp  47–68 Edited by Gross G, Krogh G. v. Boca Raton: CRC Press;
    [Google Scholar]
  47. Swofford D. L. 1998 paup*. Phylogenetic analysis Using Parsimony (*and other methods) Sunderland, MA: Sinauer;
    [Google Scholar]
  48. Terai M., DeSalle R., Burk R. D. 2002; Lack of canonical E6 and E7 open reading frames in bird papillomaviruses: Fringilla coelebs papillomavirus and Psittacus erithacus timneh papillomavirus. J Virol 76:10020–10023
    [Google Scholar]
  49. Twigg A. J., Sherratt D. 1980; Trans-complementable copy-number mutants of plasmid ColE1. Nature 283:216–218
    [Google Scholar]
  50. Wheeler D. L., Church D. M., Federhen S. 8 other authors 2003; Database resources of the National Center for Biotechnology. Nucleic Acids Res 31:28–33
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19765-0
Loading
/content/journal/jgv/10.1099/vir.0.19765-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error