1887

Abstract

We have identified a novel internal ribosome entry site (IRES) within a latently expressed Kaposi's sarcoma-associated herpesvirus (KSHV) gene (vCyclin) that controls the expression of a downstream open reading frame encoding an inhibitor of apoptosis (vFLIP). This IRES is the first such element to be identified in a DNA virus and may represent a novel mechanism through which this virus controls gene expression. We have used a dual luciferase reporter assay to identify important sequence elements essential for the activity of the IRES. A sequence of 32 nucleotides incorporating a polypyrimidine tract (PPT) was found to be required for the proper functioning of the IRES. We also show, using an electrophoretic mobility shift assay (EMSA), that proteins specific to a KSHV-infected cell line (BCP-1) but not a KSHV-negative cell line (HEK293) were able to form complexes with the IRES. By using an RNA binding assay, the cellular polypyrimidine tract binding protein (PTB, hnRNP-I) was found to bind to the IRES RNA. These results suggest that the interaction of PTB with the PPT may contribute to the correct functioning of the KSHV IRES in infected cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19733-0
2004-03-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/3/vir850615.html?itemId=/content/journal/jgv/10.1099/vir.0.19733-0&mimeType=html&fmt=ahah

References

  1. Bieleski, L. & Talbot, S. J. ( 2001; ). Kaposi's sarcoma-associated herpesvirus vCyclin open reading frame contains an internal ribosome entry site. J Virol 75, 1864–1869.[CrossRef]
    [Google Scholar]
  2. Boshoff, C., Gao, S. J., Healy, L. E. & 10 other authors ( 1998; ). Establishing a KSHV+ cell line (BCP-1) from peripheral blood and characterizing its growth in Nod/SCID mice. Blood 91, 1671–1679.
    [Google Scholar]
  3. Cesarman, E., Chang, Y., Moore, P. S., Said, J. W. & Knowles, D. M. ( 1995; ). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332, 1186–1191.[CrossRef]
    [Google Scholar]
  4. Cesarman, E., Nador, R. G., Bai, F., Bohenzky, R. A., Russo, J. J., Moore, P. S., Chang, Y. & Knowles, D. M. ( 1996; ). Kaposi's sarcoma-associated herpesvirus contains G protein-coupled receptor and cyclin D homologs which are expressed in Kaposi's sarcoma and malignant lymphoma. J Virol 70, 8218–8223.
    [Google Scholar]
  5. Chang, Y., Cesarman, E., Pessin, M. S., Lee, F., Culpepper, J., Knowles, D. M. & Moore, P. S. ( 1994; ). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865–1869.[CrossRef]
    [Google Scholar]
  6. Cornelis, S., Bruynooghe, Y., Denecker, G., Van Huffel, S., Tinton, S. & Beyaert, R. ( 2000; ). Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 5, 597–605.[CrossRef]
    [Google Scholar]
  7. Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A. & Ganem, D. ( 1998; ). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J Virol 72, 8309–8315.
    [Google Scholar]
  8. Fuerst, T. R., Niles, E. G., Studier, F. W. & Moss, B. ( 1986; ). Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83, 8122–8126.[CrossRef]
    [Google Scholar]
  9. Godden-Kent, D., Talbot, S. J., Boshoff, C., Chang, Y., Moore, P., Weiss, R. A. & Mittnacht, S. ( 1997; ). The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1. J Virol 71, 4193–4198.
    [Google Scholar]
  10. Gosert, R., Chang, K. H., Rijnbrand, R., Yi, M., Sangar, D. V. & Lemon, S. M. ( 2000; ). Transient expression of cellular polypyrimidine-tract binding protein stimulates cap-independent translation directed by both picornaviral and flaviviral internal ribosome entry sites in vivo. Mol Cell Biol 20, 1583–1595.[CrossRef]
    [Google Scholar]
  11. Graham, F. L., Smiley, J., Russell, W. C. & Nairn, R. ( 1977; ). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36, 59–74.[CrossRef]
    [Google Scholar]
  12. Grossman, J. S., Meyer, M. I., Wang, Y. C., Mulligan, G. J., Kobayashi, R. & Helfman, D. M. ( 1998; ). The use of antibodies to the polypyrimidine tract binding protein (PTB) to analyze the protein components that assemble on alternatively spliced pre-mRNAs that use distant branch points. RNA 4, 613–625.[CrossRef]
    [Google Scholar]
  13. Grundhoff, A. & Ganem, D. ( 2001; ). Mechanisms governing expression of the v-FLIP gene of Kaposi's sarcoma-associated herpesvirus. J Virol 75, 1857–1863.[CrossRef]
    [Google Scholar]
  14. Holcik, M. & Korneluk, R. G. ( 2000; ). Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. Mol Cell Biol 20, 4648–4657.[CrossRef]
    [Google Scholar]
  15. Holcik, M., Sonenberg, N. & Korneluk, R. G. ( 2000; ). Internal ribosome initiation of translation and the control of cell death. Trends Genet 16, 469–473.[CrossRef]
    [Google Scholar]
  16. Hunt, S. L. & Jackson, R. J. ( 1999; ). Polypyrimidine-tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. RNA 5, 344–359.[CrossRef]
    [Google Scholar]
  17. Isaksson, A., Berggren, M. & Ricksten, A. ( 2003; ). Epstein–Barr virus U leader exon contains an internal ribosome entry site. Oncogene 22, 572–581.[CrossRef]
    [Google Scholar]
  18. Jang, S. K., Krausslich, H. G., Nicklin, M. J., Duke, G. M., Palmenberg, A. C. & Wimmer, E. ( 1988; ). A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62, 2636–2643.
    [Google Scholar]
  19. Kaminski, A. & Jackson, R. J. ( 1998; ). The polypyrimidine tract binding protein (PTB) requirement for internal initiation of translation of cardiovirus RNAs is conditional rather than absolute. RNA 4, 626–638.[CrossRef]
    [Google Scholar]
  20. Low, W., Harries, M., Ye, H., Du, M. Q., Boshoff, C. & Collins, M. ( 2001; ). Internal ribosome entry site regulates translation of Kaposi's sarcoma-associated herpesvirus FLICE inhibitory protein. J Virol 75, 2938–2945.[CrossRef]
    [Google Scholar]
  21. Mitchell, S. A., Brown, E. C., Coldwell, M. J., Jackson, R. J. & Willis, A. E. ( 2001; ). Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras. Mol Cell Biol 21, 3364–3374.[CrossRef]
    [Google Scholar]
  22. Nanbru, C., Lafon, I., Audigier, S., Gensac, M. C., Vagner, S., Huez, G. & Prats, A. C. ( 1997; ). Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J Biol Chem 272, 32061–32066.[CrossRef]
    [Google Scholar]
  23. Neipel, F., Albrecht, J. C. & Fleckenstein, B. ( 1997; ). Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J Virol 71, 4187–4192.
    [Google Scholar]
  24. Pelletier, J. & Sonenberg, N. ( 1988; ). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325.[CrossRef]
    [Google Scholar]
  25. Pestova, T. V., Shatsky, I. N. & Hellen, C. U. ( 1996; ). Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol Cell Biol 16, 6870–6878.
    [Google Scholar]
  26. Pyronnet, S., Pradayrol, L. & Sonenberg, N. ( 2000; ). A cell cycle-dependent internal ribosome entry site. Mol Cell 5, 607–616.[CrossRef]
    [Google Scholar]
  27. Russo, J. J., Bohenzky, R. A., Chien, M. C. & 8 other authors ( 1996; ). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93, 14862–14867.[CrossRef]
    [Google Scholar]
  28. Soulier, J., Grollet, L., Oksenhendler, E. & 7 other authors ( 1995; ). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86, 1276–1280.
    [Google Scholar]
  29. Stassinopoulos, I. A. & Belsham, G. J. ( 2001; ). A novel protein-RNA binding assay: functional interactions of the foot-and-mouth disease virus internal ribosome entry site with cellular proteins. RNA 7, 114–122.[CrossRef]
    [Google Scholar]
  30. Stein, I., Itin, A., Einat, P., Skaliter, R., Grossman, Z. & Keshet, E. ( 1998; ). Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18, 3112–3119.
    [Google Scholar]
  31. Talbot, S. J., Weiss, R. A., Kellam, P. & Boshoff, C. ( 1999; ). Transcriptional analysis of human herpesvirus-8 open reading frames 71, 72, 73, K14, and 74 in a primary effusion lymphoma cell line. Virology 257, 84–94.[CrossRef]
    [Google Scholar]
  32. Thome, M., Schneider, P., Hofmann, K. & 11 other authors ( 1997; ). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 517–521.[CrossRef]
    [Google Scholar]
  33. Vagner, S., Gensac, M. C., Maret, A., Bayard, F., Amalric, F., Prats, H. & Prats, A. C. ( 1995; ). Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol Cell Biol 15, 35–44.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19733-0
Loading
/content/journal/jgv/10.1099/vir.0.19733-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error