Unusually long target site duplications flanking some of the long terminal repeats of human endogenous retrovirus K in the human genome Free

Abstract

Human endogenous retroviruses (HERVs) make up a substantial part of the human genome. HERVs and solitary long terminal repeats (solo LTRs) are usually flanked by 4–6 nt short direct repeats through the well-known mechanism of their integration. A number of solo LTRs flanked by unusually long direct repeats were detected in the human genome. These unusual structures might be a product of an alternative virus insertion mechanism.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19717-0
2004-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/6/vir851485.html?itemId=/content/journal/jgv/10.1099/vir.0.19717-0&mimeType=html&fmt=ahah

References

  1. Chen J. H., Hsieh Y. Y., Hsiau S. L., Lo T. C., Shau C. C. 1999; Characterization of insertions of IS476 and two newly identified insertion sequences, IS1478 and IS1479, in Xanthomonas campestris pv. campestris . J Bacteriol 181:1220–1228
    [Google Scholar]
  2. Feng Q., Moran J. V., Kazazian H. H. Jr, Boeke J. D. 1996; Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916 [CrossRef]
    [Google Scholar]
  3. International Human Genome Sequencing Consortium; 2001; Initial sequencing and analysis of the human genome. Nature 409:860–921 [CrossRef]
    [Google Scholar]
  4. Lebedev Y. B., Belonovitch O. S., Zybrova N. V., Khil P. P., Kurdyukov S. G., Vinogradova T. V., Hunsmann G., Sverdlov E. D. 2000; Differences in HERV-K LTR insertions in orthologous loci of humans and great apes. Gene 247:265–277 [CrossRef]
    [Google Scholar]
  5. Lower R., Lower J., Kurth R. 1996; The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci U S A 93:5177–5184 [CrossRef]
    [Google Scholar]
  6. Mager D., Medstrand P. 2002; Retroviral repeat sequences. In Encyclopedia of the Human Genome Edited by Gardiner K. London: Nature Publishing Group; Available at http://www.ehgonline.net/
    [Google Scholar]
  7. Mamedov I., Batrak A., Buzdin A., Arzumanyan E., Lebedev Y., Sverdlov E. D. 2002; Genome-wide comparison of differences in the integration sites of interspersed repeats between closely related genomes. Nucleic Acids Res 30:e71 [CrossRef]
    [Google Scholar]
  8. Medstrand P., van de Lagemaat L. N., Mager D. L. 2002; Retroelement distributions in the human genome: variations associated with age and proximity to genes. Genome Res 12:1483–1495 [CrossRef]
    [Google Scholar]
  9. Morrish T. A., Gilbert N., Myers J. S., Vincent B. J., Stamato T. D., Taccioli G. E., Batzer M. A., Moran J. V. 2002; DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31:159–165 [CrossRef]
    [Google Scholar]
  10. Sverdlov E. D. 1998; Perpetually mobile footprints of ancient infections in human genome. FEBS Lett 428:1–6 [CrossRef]
    [Google Scholar]
  11. Sverdlov E. D. 2000; Retroviruses and primate evolution. Bioessays 22:161–171 [CrossRef]
    [Google Scholar]
  12. Tanaka I., Ishihara H. 1995; Unusual long target duplication by insertion of intracisternal A-particle element in radiation-induced acute myeloid leukemia cells in mouse. FEBS Lett 376:146–150 [CrossRef]
    [Google Scholar]
  13. Wilkinson D. A., Mager D. L., Leong J. C. 1994; Endogenous human retroviruses. In The Retroviridae vol 3 Edited by Levy J. A. New York: Plenum;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19717-0
Loading
/content/journal/jgv/10.1099/vir.0.19717-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed