1887

Abstract

The viral protein linked to the genome (VPg) of (TuMV) interacts with the translation eukaryotic initiation factor (eIF) 4E. In the present study, we investigated the consequence of TuMV infection on eIF4E expression. Two isomers are present in plants, namely eIF4E and eIF(iso)4E. Expression of the latter was detected in both TuMV-infected and mock-inoculated plants, but expression of eIF4E was found only in infected plants. Membranes from TuMV-infected or mock-inoculated tissues were separated by sucrose gradient centrifugation and fractions were collected. Immunoblot analyses showed that 6K-VPg-Pro/VPg-Pro polyproteins were associated with endoplasmic reticulum membranes and were the viral forms likely to interact with eIF(iso)4E and eIF4E. interaction between 6K-VPg-Pro/VPg-Pro and eIF(iso)4E/eIF4E was confirmed by co-purification by metal chelation chromatography. The poly(A)-binding protein (PABP) was also found to co-purify with VPg-Pro. Direct interaction between VPg-Pro and PABP was shown by an ELISA-based binding assay. These experiments suggest that a multi-protein complex may form around VPg-Pro of TuMV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19706-0
2004-04-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/4/vir851055.html?itemId=/content/journal/jgv/10.1099/vir.0.19706-0&mimeType=html&fmt=ahah

References

  1. Ali, I. K., McKendrick, L., Morley, S. J. & Jackson, R. J. ( 2001; ). Truncated initiation factor eIF4G lacking an eIF4E binding site can support capped mRNA translation. EMBO J 20, 4233–4242.[CrossRef]
    [Google Scholar]
  2. Aranda, M. & Maule, A. ( 1998; ). Virus-induced host gene shutoff in animals and plants. Virology 243, 261–267.[CrossRef]
    [Google Scholar]
  3. Aranda, M. A., Escaler, M., Wang, D. & Maule, A. J. ( 1996; ). Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc Natl Acad Sci U S A 93, 15289–15293.[CrossRef]
    [Google Scholar]
  4. Belostotsky, D. A. & Meagher, R. B. ( 1993; ). Differential organ-specific expression of three poly(A)-binding-protein genes from Arabidopsis thaliana. Proc Natl Acad Sci U S A 90, 6686–6690.[CrossRef]
    [Google Scholar]
  5. Borgstrom, B. & Johansen, I. E. ( 2001; ). Mutations in pea seedborne mosaic virus genome-linked protein VPg after pathotype-specific virulence in Pisum sativum. Mol Plant Microbe Interact 14, 707–714.[CrossRef]
    [Google Scholar]
  6. Browning, K. S. ( 1996; ). The plant translational apparatus. Plant Mol Biol 32, 107–144.[CrossRef]
    [Google Scholar]
  7. Bushell, M. & Sarnow, P. ( 2002; ). Hijacking the translation apparatus by RNA viruses. J Cell Biol 158, 395–399.[CrossRef]
    [Google Scholar]
  8. Campbell Dwyer, E. J., Lai, H., MacDonald, R. C., Salvato, M. S. & Borden, K. L. ( 2000; ). The lymphocytic choriomeningitis virus RING protein Z associates with eukaryotic initiation factor 4E and selectively represses translation in a RING-dependent manner. J Virol 74, 3293–3300.[CrossRef]
    [Google Scholar]
  9. Cascardo, J. C. M., Almeida, R. S., Buzeli, R. A. A., Carolino, S. M. B., Otoni, W. C. & Fontes, E. P. B. ( 2000; ). The phosphorylation state and expression of soybean BiP isoforms are differentially regulated following abiotic stresses. J Biol Chem 275, 14494–14500.[CrossRef]
    [Google Scholar]
  10. Daros, J. A., Schaad, M. C. & Carrington, J. C. ( 1999; ). Functional analysis of the interaction between VPg-proteinase (NIa) and RNA polymerase (NIb) of tobacco etch potyvirus, using conditional and suppressor mutants. J Virol 73, 8732–8740.
    [Google Scholar]
  11. Daughenbaugh, K. F., Fraser, C. S., Hershey, J. W. & Hardy, M. E. ( 2003; ). The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment. EMBO J 22, 2852–2859.[CrossRef]
    [Google Scholar]
  12. Davies, E. & Abe, S. ( 1995; ). Methods for isolation and analysis of polyribosomes. Methods Cell Biol 50, 209–222.
    [Google Scholar]
  13. Dinkova, T. D., Aguilar, R. & Sanchez de Jimenez, E. ( 2000; ). Expression of maize eukaryotic initiation factor (eIF) iso4E is regulated at the translational level. Biochem J 351, 825–831.[CrossRef]
    [Google Scholar]
  14. Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K. S. & Robaglia, C. ( 2002; ). The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32, 927–934.[CrossRef]
    [Google Scholar]
  15. Feigenblum, D. & Schneider, R. J. ( 1993; ). Modification of eukaryotic initiation factor 4F during infection by influenza virus. J Virol 67, 3027–3035.
    [Google Scholar]
  16. Fellers, J., Wan, J., Hong, Y., Collins, G. B. & Hunt, A. G. ( 1998; ). In vitro interactions between a potyvirus-encoded, genome-linked protein and RNA-dependent RNA polymerase. J Gen Virol 79, 2043–2049.
    [Google Scholar]
  17. Gale, M., Jr, Tan, S. L. & Katze, M. G. ( 2000; ). Translational control of viral gene expression in eukaryotes. Microbiol Mol Biol Rev 64, 239–280.[CrossRef]
    [Google Scholar]
  18. Gallie, D. R. ( 1998; ). A tale of two termini: a functional interaction between the termini of an mRNA is a prerequisite for efficient translation initiation. Gene 216, 1–11.[CrossRef]
    [Google Scholar]
  19. Gallie, D. R. & Browning, K. S. ( 2001; ). eIF4G functionally differs from eIFiso4G in promoting internal initiation, cap-independent translation, and translation of structured mRNAs. J Biol Chem 276, 36951–36960.[CrossRef]
    [Google Scholar]
  20. Han, S. & Sanfaçon, H. ( 2003; ). Tomato ringspot virus proteins containing the nucleoside triphosphate binding domain are transmembrane proteins that associate with the endoplasmic reticulum and cofractionate with replication complexes. J Virol 77, 523–534.[CrossRef]
    [Google Scholar]
  21. Havelda, Z. & Maule, A. J. ( 2000; ). Complex spatial responses to cucumber mosaic virus infection in susceptible Cucurbita pepo cotyledons. Plant Cell 12, 1975–1986.[CrossRef]
    [Google Scholar]
  22. Hiremath, L. S., Hiremath, S. T., Rychlik, W., Joshi, S., Domier, L. L. & Rhoads, R. E. ( 1989; ). In vitro synthesis, phosphorylation, and localization on 48 S initiation complexes of human protein synthesis initiation factor 4E. J Biol Chem 264, 1132–1138.
    [Google Scholar]
  23. Hong, Y., Levay, K., Murphy, J. F., Klein, P. G., Shaw, J. G. & Hunt, A. G. ( 1995; ). A potyvirus polymerase interacts with the viral coat protein and VPg in yeast cells. Virology 214, 159–166.[CrossRef]
    [Google Scholar]
  24. Huang, J. T. & Schneider, R. J. ( 1991; ). Adenovirus inhibition of cellular protein synthesis involves inactivation of cap-binding protein. Cell 65, 271–280.[CrossRef]
    [Google Scholar]
  25. Johansen, I. E., Lund, O. S., Hjulsager, C. K. & Laursen, J. ( 2001; ). Recessive resistance in Pisum sativum and potyvirus pathotype resolved in a gene-for-cistron correspondence between host and virus. J Virol 75, 6609–6614.[CrossRef]
    [Google Scholar]
  26. Keller, K. E., Johansen, I. E., Martin, R. R. & Hampton, R. O. ( 1998; ). Potyvirus genome-linked protein (VPg) determines pea seed-borne mosaic virus pathotype-specific virulence in Pisum sativum. Mol Plant Microbe Interact 11, 124–130.[CrossRef]
    [Google Scholar]
  27. Lamphear, B. J., Kirchweger, R., Skern, T. & Rhoads, R. E. ( 1995; ). Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J Biol Chem 270, 21975–21983.[CrossRef]
    [Google Scholar]
  28. Le, H., Tanguay, R. L., Balasta, M. L., Wei, C. C., Browning, K. S., Metz, A. M., Goss, D. J. & Gallie, D. R. ( 1997; ). Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J Biol Chem 272, 16247–16255.[CrossRef]
    [Google Scholar]
  29. Lellis, A. D., Kasschau, K. D., Whitham, S. A. & Carrington, J. C. ( 2002; ). Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol 12, 1046–1051.[CrossRef]
    [Google Scholar]
  30. Léonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M. G. & Laliberté, J. F. ( 2000; ). Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 74, 7730–7737.[CrossRef]
    [Google Scholar]
  31. Li, X. H., Valdez, P., Olvera, R. E. & Carrington, J. C. ( 1997; ). Functions of the tobacco etch virus RNA polymerase (NIb): subcellular transport and protein–protein interaction with VPg/proteinase (NIa). J Virol 71, 1598–1607.
    [Google Scholar]
  32. Liebig, H. D., Ziegler, E., Yan, R. & 9 other authors ( 1993; ). Purification of two picornaviral 2A proteinases: interaction with eIF-4 gamma and influence on in vitro translation. Biochemistry 32, 7581–7588.[CrossRef]
    [Google Scholar]
  33. Lord, J. M., Kagawa, T., Moore, T. S. & Beevers, H. ( 1973; ). Endoplasmic reticulum as the site of lecithin formation in castor bean endosperm. J Cell Biol 57, 659–667.[CrossRef]
    [Google Scholar]
  34. Martin, M. T. & Garcia, J. A. ( 1991; ). Plum pox potyvirus RNA replication in a crude membrane fraction from infected Nicotiana clevelandii leaves. J Gen Virol 72, 785–790.[CrossRef]
    [Google Scholar]
  35. Masuta, C., Nishimura, M., Morishita, H. & Hataya, T. ( 1999; ). A single amino acid change in viral genome-associated protein of potato virus Y correlates with resistance breaking in ‘virgin A mutant’ tobacco. Phytopathology 89, 118–123.[CrossRef]
    [Google Scholar]
  36. Maule, A., Leh, V. & Lederer, C. ( 2002; ). The dialogue between viruses and hosts in compatible interactions. Curr Opin Plant Biol 5, 279–284.[CrossRef]
    [Google Scholar]
  37. Ménard, R., Chatel, H., Dupras, R., Plouffe, C. & Laliberté, J. F. ( 1995; ). Purification of turnip mosaic potyvirus viral protein genome-linked proteinase expressed in Escherichia coli and development of a quantitative assay for proteolytic activity. Eur J Biochem 229, 107–112.[CrossRef]
    [Google Scholar]
  38. Merits, A., Rajamaki, M. L., Lindholm, P., Runeberg-Roos, P., Kekarainen, T., Puustinen, P., Makelainen, K., Valkonen, J. P. & Saarma, M. ( 2002; ). Proteolytic processing of potyviral proteins and polyprotein processing intermediates in insect and plant cells. J Gen Virol 83, 1211–1221.
    [Google Scholar]
  39. Michel, Y. M., Borman, A. M., Paulous, S. & Kean, K. M. ( 2001; ). Eukaryotic initiation factor 4G-poly(A) binding protein interaction is required for poly(A) tail-mediated stimulation of picornavirus internal ribosome entry segment-driven translation but not for X-mediated stimulation of hepatitis C virus translation. Mol Cell Biol 21, 4097–4109.[CrossRef]
    [Google Scholar]
  40. Murphy, J. F., Rhoads, R. E., Hunt, A. G. & Shaw, J. G. ( 1990; ). The VPg of tobacco etch virus RNA is the 49-kDa proteinase or the N-terminal 24-kDa part of the proteinase. Virology 178, 285–288.[CrossRef]
    [Google Scholar]
  41. Nicaise, V., German-Retana, S., Sanjuan, R., Dubrana, M.-P., Mazier, M., Maisonneuve, B., Candresse, T., Caranta, C. & Le Gall, O. ( 2003; ). The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus lettuce mosaic virus. Plant Physiol 132, 1272–1282.[CrossRef]
    [Google Scholar]
  42. Nicolas, O., Pirone, T. P. & Hellmann, G. M. ( 1996; ). Construction and analysis of infectious transcripts from a resistance-breaking strain of tobacco vein mottling potyvirus. Arch Virol 141, 1535–1552.[CrossRef]
    [Google Scholar]
  43. Nicolas, O., Dunnington, S. W., Gotow, L. F., Pirone, T. P. & Hellmann, G. M. ( 1997; ). Variations in the VPg protein allow a potyvirus to overcome va gene resistance in tobacco. Virology 237, 452–459.[CrossRef]
    [Google Scholar]
  44. Osman, T. A. & Buck, K. W. ( 1997; ). The tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-binding subunit of yeast eIF-3. J Virol 71, 6075–6082.
    [Google Scholar]
  45. Palanivelu, R., Belostotsky, D. A. & Meagher, R. B. ( 2000a; ). Arabidopsis thaliana poly (A) binding protein 2 (PAB2) functions in yeast translational and mRNA decay processes. Plant J 22, 187–198.[CrossRef]
    [Google Scholar]
  46. Palanivelu, R., Belostotsky, D. A. & Meagher, R. B. ( 2000b; ). Conserved expression of Arabidopsis thaliana poly (A) binding protein 2 (PAB2) in distinct vegetative and reproductive tissues. Plant J 22, 199–210.[CrossRef]
    [Google Scholar]
  47. Piron, M., Vende, P., Cohen, J. & Poncet, D. ( 1998; ). Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 17, 5811–5821.[CrossRef]
    [Google Scholar]
  48. Poncet, D., Aponte, C. & Cohen, J. ( 1993; ). Rotavirus protein NSP3 (NS34) is bound to the 3′ end consensus sequence of viral mRNAs in infected cells. J Virol 67, 3159–3165.
    [Google Scholar]
  49. Poncet, D., Laurent, S. & Cohen, J. ( 1994; ). Four nucleotides are the minimal requirement for RNA recognition by rotavirus non-structural protein NSP3. EMBO J 13, 4165–4173.
    [Google Scholar]
  50. Quadt, R., Kao, C. C., Browning, K. S., Hershberger, R. P. & Ahlquist, P. ( 1993; ). Characterization of a host protein associated with brome mosaic virus RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 90, 1498–1502.[CrossRef]
    [Google Scholar]
  51. Rajamaki, M. L. & Valkonen, J. P. ( 1999; ). The 6K2 protein and the VPg of potato virus A are determinants of systemic infection in Nicandra physaloides. Mol Plant Microbe Interact 12, 1074–1081.[CrossRef]
    [Google Scholar]
  52. Riechmann, J. L., Lain, S. & Garcia, J. A. ( 1992; ). Highlights and prospects of potyvirus molecular biology. J Gen Virol 73, 1–16.[CrossRef]
    [Google Scholar]
  53. Rodriguez, C. M., Freire, M. A., Camilleri, C. & Robaglia, C. ( 1998; ). The Arabidopsis thaliana cDNAs coding for eIF4E and eIF(iso)4E are not functionally equivalent for yeast complementation and are differentially expressed during plant development. Plant J 13, 465–473.[CrossRef]
    [Google Scholar]
  54. Ruffel, S., Dussault, M. H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. & Caranta, C. ( 2002; ). A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32, 1067–1075.[CrossRef]
    [Google Scholar]
  55. Ruud, K. A., Kuhlow, C., Goss, D. J. & Browning, K. S. ( 1998; ). Identification and characterization of a novel cap-binding protein from Arabidopsis thaliana. J Biol Chem 273, 10325–10330.[CrossRef]
    [Google Scholar]
  56. Sachs, A. ( 2000; ). Physical and functional interactions between the mRNA cap structure and the poly(A) tail. In Translational Control of Gene Expression, pp. 447–466. Edited by N. Sonenberg, J. W. B. Hershey & M. B. Mathews. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  57. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  58. Schaad, M. C., Jensen, P. E. & Carrington, J. C. ( 1997a; ). Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J 16, 4049–4059.[CrossRef]
    [Google Scholar]
  59. Schaad, M. C., Lellis, A. D. & Carrington, J. C. ( 1997b; ). VPg of tobacco etch potyvirus is a host genotype-specific determinant for long-distance movement. J Virol 71, 8624–8631.
    [Google Scholar]
  60. Schaad, M. C., Anderberg, R. J. & Carrington, J. C. ( 2000; ). Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273, 300–306.[CrossRef]
    [Google Scholar]
  61. Tarun, S. Z., Jr, Wells, S. E., Deardorff, J. A. & Sachs, A. B. ( 1997; ). Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc Natl Acad Sci U S A 94, 9046–9051.[CrossRef]
    [Google Scholar]
  62. Taylor, D. N. & Carr, J. P. ( 2000; ). The GCD10 subunit of yeast eIF-3 binds the methyltransferase-like domain of the 126 and 183 kDa replicase proteins of tobacco mosaic virus in the yeast two-hybrid system. J Gen Virol 81, 1587–1591.
    [Google Scholar]
  63. Thompson, S. R. & Sarnow, P. ( 2000; ). Regulation of host cell translation by viruses and effects on cell function. Curr Opin Microbiol 3, 366–370.[CrossRef]
    [Google Scholar]
  64. Vende, P., Piron, M., Castagne, N. & Poncet, D. ( 2000; ). Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end. J Virol 74, 7064–7071.[CrossRef]
    [Google Scholar]
  65. Wittmann, S., Chatel, H., Fortin, M. G. & Laliberté, J. F. ( 1997; ). Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234, 84–92.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19706-0
Loading
/content/journal/jgv/10.1099/vir.0.19706-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error