1887

Abstract

Human B cells isolated from peripheral blood were activated and induced to proliferate by either Epstein–Barr virus (EBV) or the T cell-derived mitogens CD40 ligand (CD40L) plus interleukin (IL)-4. Although both populations initially proliferated as B-blasts, significant differences were revealed over a longer period. EBV infection resulted in continuously proliferating lymphoblastoid cell lines (LCLs), whereas most of the CD40L/IL-4-stimulated B cells had a finite proliferative lifespan of 3–4 weeks. Cell cycle analysis, trypan blue staining and Western blot analysis for cleavage of poly(ADP-ribose) polymerase (PARP) all demonstrated that the decrease in proliferation in CD40L/IL-4-stimulated B cells is not due to cell death. Instead, these cells arrest, accumulate in G/G and undergo alterations in cell surface marker expression, cellular morphology and immunoglobulin production, all consistent with plasmacytoid differentiation. In contrast, B cells infected with EBV continued to proliferate and retained a blast-like phenotype. Differences in both cytokine production and the expression of cell cycle regulators were identified between the two B-cell populations, which might contribute to the differentiation of the CD40L/IL-4-stimulated B cells and suggest potential mechanisms by which EBV may overcome this. The study has also identified a window of opportunity during which a comparison of isogenic populations of EBV- and mitogen-driven B blasts can be made.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19704-0
2004-04-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/4/vir850881.html?itemId=/content/journal/jgv/10.1099/vir.0.19704-0&mimeType=html&fmt=ahah

References

  1. Agematsu, K. ( 2000; ). Memory B cells and CD27. Histol Histopathol 15, 573–576.
    [Google Scholar]
  2. Allday, M. J., Sinclair, A., Parker, G., Crawford, D. H. & Farrell, P. J. ( 1995; ). Epstein–Barr virus efficiently immortalizes human B cells without neutralizing the function of p53. EMBO J 14, 1382–1391.
    [Google Scholar]
  3. Altmeyer, A., Simmons, R. C., Krajewski, S., Reed, J. C., Bornkamm, G. W. & Chen-Kiang, S. ( 1997; ). Reversal of EBV immortalization precedes apoptosis in IL-6-induced human B cell terminal differentiation. Immunity 7, 667–677.[CrossRef]
    [Google Scholar]
  4. Aman, P., Ehlin-Henriksson, B. & Klein, G. ( 1984; ). Epstein–Barr virus susceptibility of normal human B lymphocyte populations. J Exp Med 159, 208–220.[CrossRef]
    [Google Scholar]
  5. Armitage, R. J., Fanslow, W. C., Strockbine, L. & other authors ( 1992; ). Molecular and biological characterization of a murine ligand for CD40. Nature 357, 80–82.[CrossRef]
    [Google Scholar]
  6. Arpin, C., Dechanet, J., Van Kooten, C., Merville, P., Grouard, G., Briere, F., Banchereau, J. & Liu, Y. J. ( 1995; ). Generation of memory B cells and plasma cells in vitro. Science 268, 720–722.[CrossRef]
    [Google Scholar]
  7. Banchereau, J. & Rousset, F. ( 1991; ). Growing human B lymphocytes in the CD40 system. Nature 353, 678–679.[CrossRef]
    [Google Scholar]
  8. Banchereau, J., de Paoli, P., Valle, A., Garcia, E. & Rousset, F. ( 1991; ). Long-term human B cell lines dependent on interleukin-4 and antibody to CD40. Science 251, 70–72.[CrossRef]
    [Google Scholar]
  9. Burdin, N., Van Kooten, C., Galibert, L., Abrams, J. S., Wijdenes, J., Banchereau, J. & Rousset, F. ( 1995; ). Endogenous IL-6 and IL-10 contribute to the differentiation of CD40-activated human B lymphocytes. J Immunol 154, 2533–2544.
    [Google Scholar]
  10. Burdin, N., Rousset, F. & Banchereau, J. ( 1997; ). B-cell-derived IL-10: production and function. Methods Enzymol 11, 98–111.[CrossRef]
    [Google Scholar]
  11. Caldwell, R. G., Wilson, J. B., Anderson, S. J. & Longnecker, R. ( 1998; ). Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9, 405–411.[CrossRef]
    [Google Scholar]
  12. Caldwell, R. G., Brown, R. C. & Longnecker, R. ( 2000; ). Epstein–Barr virus LMP2A-induced B-cell survival in two unique classes of EmuLMP2A transgenic mice. J Virol 74, 1101–1113.[CrossRef]
    [Google Scholar]
  13. Callard, R. E., Herbert, J., Smith, S. H., Armitage, R. J. & Costelloe, K. E. ( 1995; ). CD40 cross-linking inhibits specific antibody production by human B cells. Int Immunol 11, 1809–1815.
    [Google Scholar]
  14. Campisi, J. ( 2003; ). Cancer and ageing: rival demons? Nat Rev Cancer 3, 339–349.[CrossRef]
    [Google Scholar]
  15. Cannell, E. J., Farrell, P. J. & Sinclair, A. J. ( 1996; ). Epstein–Barr virus exploits the normal cell pathway to regulate Rb activity during the immortalisation of primary B-cells. Oncogene 13, 1413–1421.
    [Google Scholar]
  16. Casamayor-Palleja, M., Khan, M. & MacLennan, I. C. ( 1995; ). A subset of CD4+ memory T cells contains preformed CD40 ligand that is rapidly but transiently expressed on their surface after activation through the T cell receptor complex. J Exp Med 181, 1293–1301.[CrossRef]
    [Google Scholar]
  17. Chen-Kiang, S. ( 1995; ). Regulation of terminal differentiation of human B-cells by IL-6. Curr Top Microbiol Immunol 194, 189–198.
    [Google Scholar]
  18. Coleman, M. L., Marshall, C. J. & Olson, M. F. ( 2003; ). Ras promotes p21Waf1/Cip1 protein stability via a cyclin D1-imposed block in proteasome-mediated degradation. EMBO J 22, 2036–2046.[CrossRef]
    [Google Scholar]
  19. Crawford, D. H. ( 1986; ). Use of the virus to prepare human-derived monoclonal antibodies. In The Epstein–Barr Virus: Recent Advances, pp. 249–271. Edited by M. A. Epstein & B. G. Achong. London: William Heinemann Medical Books.
  20. Croft, M. & Swain, S. L. ( 1991; ). B cell response to fresh and effector T helper cells. Role of cognate T-B interaction and the cytokines IL-2, IL-4, and IL-6. J Immunol 146, 4055–4064.
    [Google Scholar]
  21. Ehlin-Henriksson, B., Gordon, J. & Klein, G. ( 2003; ). B-lymphocyte subpopulations are equally susceptible to Epstein–Barr virus infection, irrespective of immunoglobulin isotype expression. Immunology 108, 427–430.[CrossRef]
    [Google Scholar]
  22. Finke, J., Rowe, M., Kallin, B., Ernberg, I., Rosen, A., Dillner, J. & Klein, G. ( 1987; ). Monoclonal and polyclonal antibodies against Epstein–Barr virus nuclear antigen 5 (EBNA-5) detect multiple protein species in Burkitt's lymphoma and lymphoblastoid cell lines. J Virol 61, 3870–3878.
    [Google Scholar]
  23. Franklin, D. S., Godfrey, V. L., Lee, H., Kovalev, G. I., Schoonhoven, R., Chen-Kiang, S., Su, L. & Xiong, Y. ( 1998; ). CDK inhibitors p18INK4c and p27Kip1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 12, 2899–2911.[CrossRef]
    [Google Scholar]
  24. Fukuda, M., Satoh, T. A., Takanashi, M., Hirai, K., Ohnishi, E. & Sairenji, T. ( 2000; ). Inhibition of cell growth and Epstein–Barr virus reactivation by CD40 stimulation in Epstein–Barr virus-transformed B cells. Viral Immunol 13, 215–229.[CrossRef]
    [Google Scholar]
  25. Garrone, P., Neidhardt, E. M., Garcia, E., Galibert, L., van Kooten, C. & Banchereau, J. ( 1995; ). Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J Exp Med 182, 1265–1273.[CrossRef]
    [Google Scholar]
  26. Gires, O., Zimber-Strobl, U., Gonnella, R., Ueffing, M., Marschall, G., Zeidler, R., Pich, D. & Hammerschmidt, W. ( 1997; ). Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J 16, 6131–6140.[CrossRef]
    [Google Scholar]
  27. Gordon, J. & Pound, J. D. ( 2000; ). Fortifying B cells with CD154: an engaging tale of many hues. Immunology 100, 269–280.[CrossRef]
    [Google Scholar]
  28. Greipp, P. R., Witzig, T. E. & Gonchoroff, N. J. ( 1985; ). Immunofluorescent plasma cell labeling indices (LI) using a monoclonal antibody (BU-1). Am J Hematol 20, 289–292.[CrossRef]
    [Google Scholar]
  29. Harada, H., Kawano, M. M., Huang, N. & 7 other authors ( 1993; ). Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 81, 2658–2663.
    [Google Scholar]
  30. Henle, W., Diehl, V., Kohn, G., Zur Hausen, H. & Henle, G. ( 1967; ). Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science 157, 1064–1065.[CrossRef]
    [Google Scholar]
  31. Janeway, C. A., Travers, P., Walport, M. & Shlomchik, M. J. ( 2001; ). Immunobiology: the immune system in health and disease, 5th edn. New York: Garland Publishing.
  32. Jego, G., Bataille, R. & Pellat-Deceunynck, C. ( 2001; ). Interleukin-6 is a growth factor for nonmalignant human plasmablasts. Blood 97, 1817–1822.[CrossRef]
    [Google Scholar]
  33. Jung, D., Neron, S., Lemieux, R., Roy, A. & Richard, M. ( 2001; ). Telomere-independent reduction of human B lymphocyte: proliferation during long-term culture. Immunol Invest 30, 157–168.[CrossRef]
    [Google Scholar]
  34. Kamijo, T., Weber, J. D., Zambetti, G., Zindy, F., Roussel, M. F. & Sherr, C. J. ( 1998; ). Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci U S A 95, 8292–8297.[CrossRef]
    [Google Scholar]
  35. Kataoka, H., Tahara, H., Watanabe, T., Sugawara, M., Ide, T., Goto, M., Furuichi, Y. & Sugimoto, M. ( 1997; ). Immortalization of immunologically committed Epstein–Barr virus-transformed human B-lymphoblastoid cell lines accompanied by a strong telomerase activity. Differentiation 62, 203–211.
    [Google Scholar]
  36. Kieff, E. & Rickinson, A. B. ( 2001; ). Epstein Barr Virus and its replication. In Fields Virology, 4th dn, pp. 2511–2574. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott Williams & Wilkins.
  37. Klein, U., Küppers, R. & Rajewsky, K. ( 1997; ). Evidence for a large compartment of IgM-expressing memory B cells in humans. Blood 89, 1288–1298.
    [Google Scholar]
  38. Klein, U., Rajewsky, K. & Küppers, R. ( 1998; ). Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 188, 1679–1689.[CrossRef]
    [Google Scholar]
  39. Lam, E. W., Glassford, J., van der Sman, J., Banerji, L., Pizzey, A. R., Shaun, N., Thomas, B. & Klaus, G. G. ( 1999; ). Modulation of E2F activity in primary mouse B cells following stimulation via surface IgM and CD40 receptors. Eur J Immunol 29, 3380–3389.[CrossRef]
    [Google Scholar]
  40. Lam, E. W., Glassford, J., Banerji, L., Thomas, N. S., Sicinski, P. & Klaus, G. G. ( 2000; ). Cyclin D3 compensates for loss of cyclin D2 in mouse B-lymphocytes activated via the antigen receptor and CD40. J Biol Chem 275, 3479–3484.[CrossRef]
    [Google Scholar]
  41. Lane, P., Traunecker, A., Hubele, S., Inui, S., Lanzavecchia, A. & Gray, D. ( 1992; ). Activated human T cells express a ligand for the human B cell-associated antigen CD40 which participates in T cell-dependent activation of B lymphocytes. Eur J Immunol 22, 2573–2578.[CrossRef]
    [Google Scholar]
  42. Lohoff, M., Koch, A. & Rollinghoff, M. ( 1992; ). Two signals are involved in polyclonal B cell stimulation by T helper type 2 cells: a role for LFA-1 molecules and interleukin 4. Eur J Immunol 22, 599–602.[CrossRef]
    [Google Scholar]
  43. Mathon, N. F. & Lloyd, A. C. ( 2001; ). Cell senescence and cancer. Nat Rev Cancer 1, 203–213.[CrossRef]
    [Google Scholar]
  44. McCloskey, N., Pound, J. D., Holder, M. J., Williams, J. M., Roberts, L. M., Lord, J. M. & Gordon, J. ( 1999; ). The extrafollicular-to-follicular transition of human B lymphocytes: induction of functional globotriaosylceramide (CD77) on high threshold occupancy of CD40. Eur J Immunol 29, 3236–3244.[CrossRef]
    [Google Scholar]
  45. Morse, L., Chen, D., Franklin, D., Xiong, Y. & Chen-Kiang, S. ( 1997; ). Induction of cell cycle arrest and B cell terminal differentiation by CDK inhibitor p18INK4c and IL-6. Immunity 6, 47–56.[CrossRef]
    [Google Scholar]
  46. Nakagomi, H., Dolcetti, R., Bejarano, M. T., Pisa, P., Kiessling, R. & Masucci, M. G. ( 1994; ). The Epstein–Barr virus latent membrane protein-1 (LMP1) induces interleukin-10 production in Burkitt lymphoma lines. Int J Cancer 57, 240–244.[CrossRef]
    [Google Scholar]
  47. Nicoletti, I., Migliorati, G., Pagliacci, M. C., Grignani, F. & Riccardi, C. ( 1991; ). A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139, 271–279.[CrossRef]
    [Google Scholar]
  48. Nilsson, K. ( 1979; ). The nature of lymphoid cell lines and their relationship to the virus. In The Epstein–Barr Virus, pp. 225–281. Edited by M. A. Epstein & B. G. Achong. Berlin: Springer.
  49. Nilsson, K. & Ponten, J. ( 1975; ). Classification and biological nature of established human hematopoietic cell lines. Int J Cancer 15, 321–341.[CrossRef]
    [Google Scholar]
  50. Nilsson, K., Klein, G., Henle, W. & Henle, G. ( 1971; ). The establishment of lymphoblastoid lines from adult and fetal human lymphoid tissue and its dependence on EBV. Int J Cancer 8, 443–450.[CrossRef]
    [Google Scholar]
  51. Noelle, R. J., Roy, M., Shepherd, D. M., Stamenkovic, I., Ledbetter, J. A. & Aruffo, A. ( 1992; ). A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Natl Acad Sci U S A 89, 6550–6554.[CrossRef]
    [Google Scholar]
  52. O'Nions, J. & Allday, M. J. ( 2003; ). Epstein–Barr virus can inhibit genotoxin-induced G1 arrest downstream of p53 by preventing the inactivation of CDK2. Oncogene 22, 7181–7191.[CrossRef]
    [Google Scholar]
  53. Ormerod, M. G., Sun, X. M., Snowden, R. T., Davies, R., Fearnhead, H. & Cohen, G. M. ( 1993; ). Increased membrane permeability of apoptotic thymocytes: a flow cytometric study. Cytometry 14, 595–602.[CrossRef]
    [Google Scholar]
  54. Parker, S. B., Eichele, G., Zhang, P., Rawls, A., Sands, A. T., Bradley, A., Olson, E. N., Harper, J. W. & Elledge, S. J. ( 1995; ). p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267, 1024–1027.[CrossRef]
    [Google Scholar]
  55. Parker, G. A., Crook, T., Bain, M., Sara, E. A., Farrell, P. J. & Allday, M. J. ( 1996; ). Epstein–Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene 13, 2541–2549.
    [Google Scholar]
  56. Pokrovskaja, K., Ehlin-Henriksson, B., Kiss, C., Challa, A., Gordon, J., Gogolak, P., Klein, G. & Szekely, L. ( 2002; ). CD40 ligation downregulates EBNA-2 and LMP-1 expression in EBV-transformed lymphoblastoid cell lines. Int J Cancer 99, 705–712.[CrossRef]
    [Google Scholar]
  57. Polack, A., Hortnagel, K., Pajic, A. & 7 other authors ( 1996; ). c-myc activation renders proliferation of Epstein–Barr virus (EBV)-transformed cells independent of EBV nuclear antigen 2 and latent membrane protein 1. Proc Natl Acad Sci U S A 93, 10411–10416.[CrossRef]
    [Google Scholar]
  58. Pope, J. H. ( 1967; ). Establishment of cell lines from peripheral leucocytes in infectious mononucleosis. Nature 216, 810–811.[CrossRef]
    [Google Scholar]
  59. Quelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. ( 1995; ). Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000.[CrossRef]
    [Google Scholar]
  60. Randall, T. D., Heath, A. W., Santos-Argumedo, L., Howard, M. C., Weissman, I. L. & Lund, F. E. ( 1998; ). Arrest of B lymphocyte terminal differentiation by CD40 signalling: mechanism for lack of antibody-secreting cells in germinal centres. Immunity 8, 733–742.[CrossRef]
    [Google Scholar]
  61. Richards, M. L. & Katz, D. H. ( 1997; ). Analysis of the promoter elements necessary for IL-4 and anti-CD40 antibody induction of murine Fc epsilon RII (CD23): comparison with the germline epsilon promoter. J Immunol 158, 263–272.
    [Google Scholar]
  62. Rousset, F., Peyrol, S., Garcia, E., Vezzio, N., Andujar, M., Grimaud, J. A. & Banchereau, J. ( 1995; ). Long-term cultured CD40-activated B lymphocytes differentiate into plasma cells in response to IL-10 but not IL-4. Int Immunol 7, 1243–1253.[CrossRef]
    [Google Scholar]
  63. Schonbeck, U. & Libby, P. ( 2001; ). The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 58, 4–43.[CrossRef]
    [Google Scholar]
  64. Schrantz, N., Beney, G. E., Auffredou, M. T., Bourgeade, M. F., Leca, G. & Vazquez, A. ( 2000; ). The expression of p18INK4 and p27kip1 cyclin-dependent kinase inhibitors is regulated differently during human B cell differentiation. J Immunol 165, 4346–4352.[CrossRef]
    [Google Scholar]
  65. Sherr, C. J. & DePinho, R. A. ( 2000; ). Cellular senescence: mitotic clock or culture shock? Cell 102, 407–410.[CrossRef]
    [Google Scholar]
  66. Shvarts, A., Brummelkamp, T. R., Scheeren, F., Koh, E., Daley, G. Q., Spits, H. & Bernards, R. ( 2002; ). A senescence rescue screen identifies BCL6 as an inhibitor of anti-proliferative p19ARF–p53 signaling. Genes Dev 16, 681–686.[CrossRef]
    [Google Scholar]
  67. Smeland, E. B., Blomhoff, H. K., Funderud, S., Shalaby, M. R. & Espevik, T. ( 1989; ). Interleukin 4 induces selective production of interleukin 6 from normal human B lymphocytes. J Exp Med 170, 1463–1468.[CrossRef]
    [Google Scholar]
  68. Spender, L. C., Cannell, E. J., Hollyoake, M., Wensing, B., Gawn, J. M., Brimmell, M., Packham, G. & Farrell, P. J. ( 1999; ). Control of cell cycle entry and apoptosis in B lymphocytes infected by Epstein–Barr virus. J Virol 73, 4678–4688.
    [Google Scholar]
  69. Staudt, L. M. & Brown, P. O. ( 2000; ). Genomic views of the immune system. Annu Rev Immunol 18, 829–859.[CrossRef]
    [Google Scholar]
  70. Thorley-Lawson, D. A. ( 2001; ). Epstein–Barr virus: exploiting the immune system. Nat Rev Immunol 1, 75–82.[CrossRef]
    [Google Scholar]
  71. Tosato, G., Tanner, J., Jones, K. D., Revel, M. & Pike, S. E. ( 1990; ). Identification of interleukin-6 as an autocrine growth factor for Epstein–Barr virus-immortalized B cells. J Virol 64, 3033–3041.
    [Google Scholar]
  72. Tourigny, M. R., Ursini-Siegel, J., Lee, H. & 9 other authors ( 2002; ). CDK inhibitor p18INK4c is required for the generation of functional plasma cells. Immunity 17, 179–189.[CrossRef]
    [Google Scholar]
  73. Urashima, M., Chauhan, D., Hatziyanni, M., Ogata, A., Hollenbaugh, D., Aruffo, A. & Anderson, K. C. ( 1996; ). CD40 ligand triggers interleukin-6 mediated B cell differentiation. Leuk Res 20, 507–515.[CrossRef]
    [Google Scholar]
  74. van Kooten, C. & Banchereau, J. ( 2000; ). CD40–CD40 ligand. J Leukoc Biol 67, 2–17.
    [Google Scholar]
  75. Vousden, K. H. & Lu, X. ( 2002; ). Live or let die: the cell's response to p53. Nat Rev Cancer 2, 594–604.[CrossRef]
    [Google Scholar]
  76. Wade, M. & Allday, M. J. ( 2000; ). Epstein–Barr virus suppresses a G2/M checkpoint activated by genotoxins. Mol Cell Biol 20, 1344–1360.[CrossRef]
    [Google Scholar]
  77. Walker, P. R., Smith, C., Youdale, T., Leblanc, J., Whitfield, J. F. & Sikorska, M. ( 1991; ). Topoisomerase II-reactive chemotherapeutic drugs induce apoptosis in thymocytes. Cancer Res 51, 1078–1085.
    [Google Scholar]
  78. Worm, M., Krah, J. M., Manz, R. A. & Henz, B. M. ( 1998; ). Retinoic acid inhibits CD40+interleukin-4-mediated IgE production in vitro. Blood 92, 1713–1720.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19704-0
Loading
/content/journal/jgv/10.1099/vir.0.19704-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error