1887

Abstract

The immunogenicities of candidate DNA- and modified vaccinia virus Ankara (MVA)-vectored human immunodeficiency virus (HIV) vaccines were evaluated on their own and in a prime–boost regimen in phase I clinical trials in healthy uninfected individuals in the United Kingdom. Given the current lack of approaches capable of inducing broad HIV-neutralizing antibodies, the pTHr.HIVA DNA and MVA.HIVA vaccines focus solely on the induction of cell-mediated immunity. The vaccines expressed a common immunogen, HIVA, which consists of consensus HIV-1 clade A Gag p24/p17 proteins fused to a string of clade A-derived epitopes recognized by cytotoxic T lymphocytes (CTLs). Volunteers' fresh peripheral blood mononuclear cells were tested for HIV-specific responses in a validated gamma interferon enzyme-linked immunospot (ELISPOT) assay using four overlapping peptide pools across the Gag domain and three pools of known CTL epitopes present in all of the HIVA protein. Both the DNA and the MVA vaccines alone and in a DNA prime–MVA boost combination were safe and induced HIV-specific responses in 14 out of 18, seven out of eight and eight out of nine volunteers, respectively. These results are very encouraging and justify further vaccine development.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19701-0
2004-04-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/4/vir850911.html?itemId=/content/journal/jgv/10.1099/vir.0.19701-0&mimeType=html&fmt=ahah

References

  1. Boyer, J. D., Cohen, A. D., Vogt, S. & 11 other authors ( 2000; ). Vaccination of seronegative volunteers with a human immunodeficiency virus type 1 env/rev DNA vaccine induces antigen-specific proliferation and lymphocyte production of beta-chemokines. J Infect Dis 181, 476–483.[CrossRef]
    [Google Scholar]
  2. Cao, H., Kanki, P., Sankale, J. L., Dieng-Sarr, A., Mazzara, G. P., Kalams, S. A., Korber, B., Mboup, S. & Walker, B. D. ( 1997; ). Cytotoxic T lymphocyte cross-reactivity among different human immunodeficiency virus type 1 clades: implications for vaccine development. J Virol 71, 8615–8623.
    [Google Scholar]
  3. Cao, H., Kaleebu, P., Hom, D. & 14 other authors ( 2003; ). Immunogenicity of a recombinant human immunodeficiency virus (HIV)-canarypox vaccine in HIV-seronegative Ugandan volunteers: results of the HIV Network for Prevention Trials 007 Vaccine Study. J Infect Dis 187, 887–895.[CrossRef]
    [Google Scholar]
  4. Dorrell, L., Dong, T., Ogg, G. S., McAdam, S., Anzala, O., Rostron, T., Conlon, C., McMichael, A. J. & Rowland-Jones, S. L. ( 1999; ). Distinct recognition of clade A HIV-1 epitopes by cytotoxic T lymphocytes generated from donors infected in Africa. J Virol 73, 1708–1714.
    [Google Scholar]
  5. Dorrell, L., Willcox, B. E., Jones, E. Y. & 10 other authors ( 2001; ). Cytotoxic T lymphocytes recognize structurally diverse, clade-specific and cross-reactive peptides in human immunodeficiency virus type-1 gag through HLA-B53. Eur J Immunol 31, 1747–1756.[CrossRef]
    [Google Scholar]
  6. Dunn, H. S., Haney, D. J., Ghanekar, S. A., Stepick-Biek, P., Lewis, D. B. & Maecker, H. T. ( 2002; ). Dynamics of CD4 and CD8 T cell responses to cytomegalovirus in healthy human donors. J Infect Dis 186, 15–22.[CrossRef]
    [Google Scholar]
  7. Ferrari, G., Berend, C., Ottinger, J. & 8 other authors ( 1997; ). Replication-defective canarypox (ALVAC) vectors effectively activate anti-human immunodeficiency virus-1 cytotoxic T lymphocytes present in infected patients: implications for antigen-specific immunotherapy. Blood 90, 2406–2416.
    [Google Scholar]
  8. Hanke, T. ( 2003; ). Development of prophylactic AIDS vaccines: the current state of affairs. Curr Opin Mol Ther 5, 25–33.
    [Google Scholar]
  9. Hanke, T. & McMichael, A. J. ( 2000; ). Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med 6, 951–955.[CrossRef]
    [Google Scholar]
  10. Hanke, T., McMichael, A. J., Samuel, R. S., Powell, L. A. J., McLoughlin, L., Crome, S. J. & Edlin, A. ( 2002; ). Lack of toxicity and persistence in the mouse associated with administration of candidate DNA- and modified vaccinia virus Ankara (MVA)-based HIV vaccines for Kenya. Vaccine 21, 108–114.[CrossRef]
    [Google Scholar]
  11. Janssen, E. M., Lemmens, E. E., Wolfe, T., Christen, U., von Herrath, M. G. & Schoenberger, S. P. ( 2003; ). CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856.[CrossRef]
    [Google Scholar]
  12. Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J. & Hendrickson, W. A. ( 1998; ). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659.[CrossRef]
    [Google Scholar]
  13. Kwong, P. D., Doyle, M. L., Casper, D. J. & 18 other authors ( 2002; ). HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420, 678–682.[CrossRef]
    [Google Scholar]
  14. Lang, H. L., Jacobsen, H., Ikemizu, S. & 11 other authors ( 2002; ). A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 3, 940–943.[CrossRef]
    [Google Scholar]
  15. MacGregor, R. R., Ginsberg, R., Ugen, K. E., Baine, Y., Kang, C. U., Tu, X. M., Higgins, T., Weiner, D. B. & Boyer, J. D. ( 2002; ). T-cell responses induced in normal volunteers immunized with a DNA-based vaccine containing HIV-1 env and rev. AIDS 16, 2137–2143.[CrossRef]
    [Google Scholar]
  16. McConkey, S. J., Reece, W. H., Moorthy, V. S. & 25 other authors ( 2003; ). Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med 9, 729–735.[CrossRef]
    [Google Scholar]
  17. McMichael, A. J. & Hanke, T. ( 2002; ). The quest for an AIDS vaccine: is the CD8+ T cell approach feasible? Nat Rev Immunol 2, 283–291.[CrossRef]
    [Google Scholar]
  18. McMichael, A. J. & Hanke, T. ( 2003; ). HIV vaccines 1983-2003. Nat Med 9, 874–880.[CrossRef]
    [Google Scholar]
  19. Mwau, M., McMichael, A. J. & Hanke, T. ( 2002; ). Design and validation of an enzyme-linked immunospot assay for use in clinical trials of candidate HIV vaccines. AIDS Res Hum Retroviruses 18, 611–618.[CrossRef]
    [Google Scholar]
  20. Neilson, J. R., John, G. C., Carr, J. K. & 13 other authors ( 1999; ). Subtypes of human immunodeficiency virus type 1 and disease stage among women in Nairobi, Kenya. J Virol 73, 4393–4403.
    [Google Scholar]
  21. Price, D. A., Sewell, A. K., Dong, T., Tan, R., Goulder, P. J., Rowland-Jones, S. L. & Phillips, R. E. ( 1998; ). Antigen-specific release of beta-chemokines by anti-HIV-1 cytotoxic T lymphocytes. Curr Biol 8, 355–358.
    [Google Scholar]
  22. Seth, A., Ourmanov, I., Kuroda, M. J. & 7 other authors ( 1998; ). Recombinant modified vaccinia virus Ankara-simian immunodeficiency virus gag pol elicits cytotoxic T lymphocytes in rhesus monkeys detected by a major histocompatibility complex class I/peptide tetramer. Proc Natl Acad Sci U S A 95, 10112–10116.[CrossRef]
    [Google Scholar]
  23. Stranford, S. A., Skurnick, J., Louria, D. & 7 other authors ( 1999; ). Lack of infection in HIV-exposed individuals is associated with a strong CD8+ cell noncytotoxic anti-HIV response. Proc Natl Acad Sci U S A 96, 1030–1035.[CrossRef]
    [Google Scholar]
  24. Thomson, M. M., Perez-Alvarez, L. & Najera, R. ( 2002; ). Molecular epidemiology of HIV-1 genetic forms and its significance for vaccine development and therapy. Lancet Infect Dis 2, 461–471.[CrossRef]
    [Google Scholar]
  25. Ugen, K. E., Nyland, S. B., Boyer, J. D. & 11 other authors ( 1998; ). DNA vaccination with HIV-1 expressing constructs elicits immune responses in human. Vaccine 16, 1818–1821.[CrossRef]
    [Google Scholar]
  26. UNAIDS ( 2001; ). AIDS Epidemic Update: December 2001. Geneva: UNAIDS/WHO.
  27. Wagner, L., Yang, O. O., Garcia-Zepeda, E. A., Ge, Y., Kalams, S. A., Walker, B. D., Pasternack, M. S. & Luster, A. D. ( 1998; ). Beta-chemokines are released from HIV-1-specific cytolytic T cell granules complexed to proteoglycans. Nature 391, 908–911.[CrossRef]
    [Google Scholar]
  28. Walker, B. D. & Korber, B. T. ( 2001; ). Immune control of HIV: the obstacles of HLA and viral diversity. Nat Immunol 2, 473–475.[CrossRef]
    [Google Scholar]
  29. Wang, R., Doolan, D. L., Le, T. P. & 12 other authors ( 1998; ). Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 282, 476–480.[CrossRef]
    [Google Scholar]
  30. Wee, E. G.-T., Patel, S., McMichael, A. J. & Hanke, T. ( 2002; ). A DNA/MVA-based candidate HIV vaccine for Kenya induces multi-specific T cell responses in rhesus macaques. J Gen Virol 83, 75–80.
    [Google Scholar]
  31. Williams, S. G., Cranenburgh, R. M., Weiss, A. M. E., Wrighton, C. J., Sherratt, D. J. & Hanak, J. A. J. ( 1998; ). Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids. Nucleic Acids Res 26, 2120–2124.[CrossRef]
    [Google Scholar]
  32. Wyatt, R., Kwong, P. D., Desjardins, E., Sweet, R. W., Robinson, J., Hendrickson, W. A. & Sodroski, J. G. ( 1998; ). The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 393, 705–711.[CrossRef]
    [Google Scholar]
  33. Zhang, C., Cui, Y., Houston, S. & Chang, L. J. ( 1996; ). Protective immunity to HIV-1 in SCID/beige mice reconstituted with peripheral blood lymphocytes of exposed but uninfected individuals. Proc Natl Acad Sci U S A 93, 14720–14725.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19701-0
Loading
/content/journal/jgv/10.1099/vir.0.19701-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error