1887

Abstract

Full-length sequences of the Epstein–Barr virus (EBV) gene for latent membrane protein (LMP)-1 from 22 nasopharyngeal carcinoma (NPC) biopsy specimens and 18 non-neoplastic counterparts (NPI) were determined. Relative to the B95-8 strain, the amino acid sequences of the toxic-signal and transformation domains were changed variably in NPC and NPI specimens; in contrast, no change was observed in the NF-B (nuclear factor B) activation domain. HLA typing revealed that 47 % of NPC and 31 % of NPI specimens were HLA A2-positive. A major A2-restricted epitope within LMP-1 (residues 125–133) was analysed. At residue 126, a change of L→F was detected in 91 % (20/22) of NPC and 67 % (12/18) of NPI specimens. In addition, a deletion at residue 126 was detected in one NPC sample from Taiwan. At residue 129, a change of M→I was observed in all samples, regardless of whether they were NPC or NPI. The changes in this peptide between NPC and NPI specimens, including mutation and deletion, are statistically significant (<0·05). A recent report indicated that this variant sequence is recognized poorly by epitope-specific T cells. Genotyping results indicated that 96 % of NPC and 67 % of NPI samples carried a type A virus. By scanning the entire sequence of LMP-1, eight distinct patterns were identified. Detailed examination of these patterns revealed that type A strains are more prevalent in NPC than in NPI specimens and are marked by the loss of an I site, the presence of a 30 bp deletion and the presence of a mutated, A2-restricted, T cell target epitope sequence. These results suggest that an EBV strain carrying an HLA A2-restricted ‘epitope-loss variant’ of LMP-1 is prevalent in NPC in southern China and Taiwan.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19696-0
2004-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/7/vir852023.html?itemId=/content/journal/jgv/10.1099/vir.0.19696-0&mimeType=html&fmt=ahah

References

  1. Baer R., Bankier A. T., Biggin M. D. 9 other authors 1984; DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature 310:207–211 [CrossRef]
    [Google Scholar]
  2. Baichwal V. R., Sugden B. 1988; Transformation of Balb 3T3 cells by the BNLF-1 gene of Epstein–Barr virus. Oncogene 2:461–467
    [Google Scholar]
  3. Baichwal V. R., Sugden B. 1989; The multiple membrane-spanning segments of the BNLF-1 oncogene from Epstein–Barr virus are required for transformation. Oncogene 4:67–74
    [Google Scholar]
  4. Chapman A. L. N., Rickinson A. B., Thomas W. A., Jarrett R. F., Crocker J., Lee S. P. 2001; Epstein–Barr virus-specific cytotoxic T lymphocyte responses in the blood and tumor site of Hodgkin's disease patients. Implications for a T-cell-based therapy. Cancer Res 61:6219–6226
    [Google Scholar]
  5. Chen M. L., Tsai C. N., Liang C. L., Shu C. H., Huang C. R., Sulitzeanu D., Liu S. T., Chang Y. S. 1992; Cloning and characterization of the latent membrane protein (LMP) of a specific Epstein–Barr virus variant derived from the nasopharyngeal carcinoma in the Taiwanese population. Oncogene 7:2131–2140
    [Google Scholar]
  6. Cheung S.-T., Lo K.-W., Leung S. F., Chan W.-Y., Choi P. H. K., Johnson P. J., Lee J. C. K., Huang D. P. 1996; Prevalence of LMP1 deletion variant of Epstein–Barr virus in nasopharyngeal carcinoma and gastric tumors in Hong Kong. Int J Cancer 66:711–712 [CrossRef]
    [Google Scholar]
  7. De Campos-Lima P.-O., Gavioli R., Zhang Q.-J., Wallace L. E., Dolcetti R., Rowe M., Rickinson A. B., Masucci M. G. 1993; HLA-A11 epitope loss isolates of Epstein–Barr virus from a highly A11+ population. Science 260:98–100 [CrossRef]
    [Google Scholar]
  8. De Campos-Lima P.-O., Levitsky V., Brooks J., Lee S. P., Hu L. F., Rickinson A. B., Masucci M. G. 1994; T cell responses and virus evolution: loss of HLA A11-restricted CTL epitopes in Epstein–Barr virus isolates from highly A11-positive populations by selective mutation of anchor residues. J Exp Med 179:1297–1305 [CrossRef]
    [Google Scholar]
  9. de Thé G. 1982; Epidemiology of Epstein–Barr virus and associated diseases in man. In The Herpesviruses vol 1 pp  25–103 Edited by Roizman B. New York: Plenum;
    [Google Scholar]
  10. Devergne O., Hatzivassiliou E., Izumi K. M., Kaye K. M., Kleijnen M. F., Kieff E., Mosialos G. 1996; Association of TRAF1, TRAF2, and TRAF3 with an Epstein–Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF- κ B activation. Mol Cell Biol 16:7098–7108
    [Google Scholar]
  11. Duraiswamy J., Burrows J. M., Bharadwaj M., Burrows S. R., Cooper L., Pimtanothai N., Khanna R. 2003; Ex vivo analysis of T-cell responses to Epstein–Barr virus-encoded oncogene latent membrane protein 1 reveals highly conserved epitope sequences in virus isolates from diverse geographic regions. J Virol 77:7401–7410 [CrossRef]
    [Google Scholar]
  12. Edwards R. H., Seillier-Moiseiwitsch F., Raab-Traub N. 1999; Signature amino acid changes in latent membrane protein 1 distinguish Epstein–Barr virus strains. Virology 261:79–95 [CrossRef]
    [Google Scholar]
  13. Eliopoulos A. G., Stack M., Dawson C. W., Kaye K. M., Hodgkin L., Sihota S., Rowe M., Young L. S. 1997; Epstein–Barr virus-encoded LMP1 and CD40 mediate IL-6 production in epithelial cells via an NF- κ B pathway involving TNF receptor-associated factors. Oncogene 14:2899–2916 [CrossRef]
    [Google Scholar]
  14. Eliopoulos A. G., Blake S. M. S., Floettmann J. E., Rowe M., Young L. S. 1999; Epstein–Barr virus-encoded latent membrane protein 1 activates the JNK pathway through its extreme C terminus via a mechanism involving TRADD and TRAF2. J Virol 73:1023–1035
    [Google Scholar]
  15. Fielding C. A., Sandvej K., Mehl A., Brennan P., Jones M., Rowe M. 2001; Epstein–Barr virus LMP-1 natural sequence variants differ in their potential to activate cellular signaling pathways. J Virol 75:9129–9141 [CrossRef]
    [Google Scholar]
  16. Floettmann J. E., Rowe M. 1997; Epstein–Barr virus latent membrane protein-1 (LMP1) C-terminus activation region 2 (CTAR2) maps to the far C-terminus and requires oligomerisation for NF- κ B activation. Oncogene 15:1851–1858 [CrossRef]
    [Google Scholar]
  17. Fries K. L., Miller W. E., Raab-Traub N. 1996; Epstein–Barr virus latent membrane protein 1 blocks p53-mediated apoptosis through the induction of the A20 gene. J Virol 70:8653–8659
    [Google Scholar]
  18. Gires O., Kohlhuber F., Kilger E. 7 other authors 1999; Latent membrane protein 1 of Epstein–Barr virus interacts with JAK3 and activates STAT proteins. EMBO J 18:3064–3073 [CrossRef]
    [Google Scholar]
  19. Gorski J. 1990; HLA analysis by PCR/SSOPH. In The HLA System: a New Approach pp  73–78 Edited by Lee J. New York: Springer-Verlag;
    [Google Scholar]
  20. Hahn P., Novikova E., Scherback L. 7 other authors; 2001; The LMP1 gene isolated from Russian nasopharyngeal carcinoma has no 30-bp deletion. Int J Cancer 91:815–821 [CrossRef]
    [Google Scholar]
  21. Hammarskjöld M. L., Simurda M. C. 1992; Epstein–Barr virus latent membrane protein transactivates the human immunodeficiency virus type 1 long terminal repeat through induction of NF- κ B activity. J Virol 66:6496–6501
    [Google Scholar]
  22. Henderson S., Rowe M., Gregory C., Croom-Carter D., Wang F., Longnecker R., Kieff E., Rickinson A. 1991; Induction of bcl-2 expression by Epstein–Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65:1107–1115 [CrossRef]
    [Google Scholar]
  23. Henry S., Sacaze C., Berrajah L., Karray H., Drira M., Hammami A., Icart J., Mariame B. 2001; In nasopharyngeal carcinoma-bearing patients, tumors and lymphocytes are infected by different Epstein–Barr virus strains. Int J Cancer 91:698–704 [CrossRef]
    [Google Scholar]
  24. Hu L.-F., Zabarovsky E. R., Chen F., Cao S.-L., Ernberg I., Klein G., Winberg G. 1991; Isolation and sequencing of the Epstein–Barr virus BNLF-1 gene (LMP1) from a Chinese nasopharyngeal carcinoma. J Gen Virol 72:2399–2409 [CrossRef]
    [Google Scholar]
  25. Huen D. S., Henderson S. A., Croom-Carter D., Rowe M. 1995; The Epstein–Barr virus latent protein-1 (LMP-1) mediates activation of NF- κ B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10:549–560
    [Google Scholar]
  26. Itakura O., Yamada S., Narita M., Kikuta H. 1996; High prevalence of a 30-base pair deletion and single-base mutations within the carboxy terminal end of the LMP-1 oncogene of Epstein–Barr virus in the Japanese population. Oncogene 13:1549–1553
    [Google Scholar]
  27. Izumi K. M., Kieff E. D. 1997; The Epstein–Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF- κ B. Proc Natl Acad Sci U S A 94:12592–12597 [CrossRef]
    [Google Scholar]
  28. Izumi K. M., McFarland E. C., Ting A. T., Riley E. A., Seed B., Kieff E. D. 1999; The Epstein–Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF- κ B activation. Mol Cell Biol 19:5759–5767
    [Google Scholar]
  29. Khanna R., Burrows S. R., Nicholls J., Poulsen L. M. 1998; Identification of cytotoxic T cell epitopes within Epstein–Barr virus (EBV) oncogene latent membrane protein 1 (LMP1): evidence for HLA A2 supertype-restricted immune recognition of EBV-infected cells by LMP1-specific cytotoxic T lymphocytes. Eur J Immunol 28:451–458 [CrossRef]
    [Google Scholar]
  30. Kieser A., Kaiser E., Hammerschmidt W. 1999; LMP1 signal transduction differs substantially from TNF receptor 1 signaling in the molecular functions of TRADD and TRAF2. EMBO J 18:2511–2521 [CrossRef]
    [Google Scholar]
  31. Li S. N., Chang Y. S., Liu S. T. 1996; Effect of a 10-amino acid deletion on the oncogenic activity of latent membrane protein 1 of Epstein–Barr virus. Oncogene 12:2129–2135
    [Google Scholar]
  32. Lin J.-C., Lin S.-C., De B. K., Chan W.-P., Evatt B. L., Chan W. C. 1993; Precision of genotyping of Epstein–Barr virus by polymerase chain reaction using three gene loci (EBNA-2, EBNA-3C, and EBER): predominance of type A virus associated with Hodgkin's disease. Blood 81:3372–3381
    [Google Scholar]
  33. Lin J.-C., Lin S.-C., Luppi M., Torelli G., Mar E.-C. 1995; Geographic sequence variation of latent membrane protein 1 gene of Epstein–Barr virus in Hodgkin's lymphomas. J Med Virol 45:183–191 [CrossRef]
    [Google Scholar]
  34. Lung M. L., Chang R. S., Huang M. L., Guo H.-Y., Choy D., Sham J., Tsao S. Y., Cheng P., Ng M. H. 1990; Epstein–Barr virus genotypes associated with nasopharyngeal carcinoma in southern China. Virology 177:44–53 [CrossRef]
    [Google Scholar]
  35. Miller W. E., Edwards R. H., Walling D. M., Raab-Traub N. 1994; Sequence variation in the Epstein–Barr virus latent membrane protein 1. J Gen Virol 75:2729–2740 [CrossRef]
    [Google Scholar]
  36. Miller W. E., Earp H. S., Raab-Traub N. 1995; The Epstein–Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J Virol 69:4390–4398
    [Google Scholar]
  37. Mitchell T., Sugden B. 1995; Stimulation of NF- κ B-mediated transcription by mutant derivatives of the latent membrane protein of Epstein–Barr virus. J Virol 69:2968–2976
    [Google Scholar]
  38. Mosialos G., Birkenbach M., Yalamanchili R., VanArsdale T., Ware C., Kieff E. 1995; The Epstein–Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80:389–399 [CrossRef]
    [Google Scholar]
  39. Murono S., Inoue H., Tanabe T., Joab I., Yoshizaki T., Furukawa M., Pagano J. S. 2001; Induction of cyclooxygenase-2 by Epstein–Barr virus latent membrane protein 1 is involved in vascular endothelial growth factor production in nasopharyngeal carcinoma cells. Proc Natl Acad Sci U S A 98:6905–6910 [CrossRef]
    [Google Scholar]
  40. Parker K. C., Bednarek M. A., Coligan J. E. 1994; Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163–175
    [Google Scholar]
  41. Raab-Traub N. 1992; Epstein–Barr virus and nasopharyngeal carcinoma. Semin Cancer Biol 3:297–307
    [Google Scholar]
  42. Rickinson A. B., Young L. S., Rowe M. 1987; Influence of the Epstein–Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J Virol 61:1310–1317
    [Google Scholar]
  43. Sandberg M., Hammerschmidt W., Sugden B. 1997; Characterization of LMP-1's association with TRAF1, TRAF2, and TRAF3. J Virol 71:4649–4656
    [Google Scholar]
  44. Sandvej K., Gratama J. W., Munch M., Zhou X.-G., Bolhuis R. L. H., Andresen B. S., Gregersen N., Hamilton-Dutoit S. 1997; Sequence analysis of the Epstein–Barr virus (EBV) latent membrane protein-1 gene and promoter region: identification of four variants among wild-type EBV isolates. Blood 90:323–330
    [Google Scholar]
  45. Sung N. S., Edwards R. H., Seillier-Moiseiwitsch F., Perkins A. G., Zeng Y., Raab-Traub N. 1998; Epstein–Barr virus strain variation in nasopharyngeal carcinoma from the endemic and non-endemic regions of China. Int J Cancer 76:207–215 [CrossRef]
    [Google Scholar]
  46. Trivedi P., Hu L. F., Chen F., Christensson B., Masucci M. G., Klein G., Winberg G. 1994; Epstein–Barr virus (EBV)-encoded membrane protein LMP1 from a nasopharyngeal carcinoma is non-immunogenic in a murine model system, in contrast to a B cell-derived homologue. Eur J Cancer 30A:84–88
    [Google Scholar]
  47. Walling D. M., Shebib N., Weaver S. C., Nichols C. M., Flaitz C. M., Webster-Cyriaque J. 1999; The molecular epidemiology and evolution of Epstein–Barr virus: sequence variation and genetic recombination in the latent membrane protein-1 gene. J Infect Dis 179:763–774 [CrossRef]
    [Google Scholar]
  48. Wang D., Liebowitz D., Kieff E. 1985; An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43:831–840 [CrossRef]
    [Google Scholar]
  49. Wang F., Gregory C., Sample C., Rowe M., Liebowitz D., Murray R., Rickinson A., Kieff E. 1990; Epstein–Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol 64:2309–2318
    [Google Scholar]
  50. Yoshizaki T., Sato H., Furukawa M., Pagano J. S. 1998; The expression of matrix metalloproteinase 9 is enhanced by Epstein–Barr virus latent membrane protein 1. Proc Natl Acad Sci U S A 95:3621–3626 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19696-0
Loading
/content/journal/jgv/10.1099/vir.0.19696-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error