1887

Abstract

The prevalence of human papillomavirus type 16 E6 variant lineages was characterized in a cross-sectional study of 24 human immunodeficiency virus type 1 (HIV)-positive and 33 HIV-negative women in New Orleans. The European prototype was the predominant variant in the HIV-negative women (39·4 %), while in the HIV-positive women the European 350G variant was predominant (29·1 %). In exact logistic regression models, HIV-positive women were significantly more likely to harbour any variant with a nucleotide G-350 mutation compared with HIV-negative women [58·3 % vs 21·1 %; adjusted odds ratio (AOR)=6·28, 95 % confidence interval (CI)=1·19–46·54]. Models also revealed a trend towards increased prevalence of Asian–American lineage in HIV-positive women compared with HIV-negative women (25·0 % vs 6·0 %; AOR=6·35, 95 % CI=0·77–84·97). No association was observed between any variant and cytology or CD4 cell counts or HIV-1 viral loads. These observations reflect a difference in the distribution of HPV-16 variants among HIV-positive and -negative women, indicating that HIV-positive status may lead to increased prevalence of a subset of variants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19694-0
2004-05-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/5/vir851237.html?itemId=/content/journal/jgv/10.1099/vir.0.19694-0&mimeType=html&fmt=ahah

References

  1. Ahdieh, L., Klein, R. S., Burk, R. & 7 other authors ( 2001; ). Prevalence, incidence, and type-specific persistence of human papillomavirus in human immunodeficiency virus (HIV)-positive and HIV-negative women. J Infect Dis 184, 682–690.[CrossRef]
    [Google Scholar]
  2. Andersson, S., Alemi, M., Rylander, E., Strand, A., Larsson, B., Sallstrom, J. & Wilander, E. ( 2000; ). Uneven distribution of HPV 16 E6 prototype and variant (L83V) oncoprotein in cervical neoplastic lesions. Br J Cancer 83, 307–310.[CrossRef]
    [Google Scholar]
  3. Berumen, J., Ordonez, R. M., Lazcano, E. & 7 other authors ( 2001; ). Asian–American variants of human papillomavirus 16 and risk for cervical cancer: a case–control study. J Natl Cancer Inst 93, 1325–1330.[CrossRef]
    [Google Scholar]
  4. Bosch, F. X., Manos, M. M., Munoz, N. & 7 other authors ( 1995; ). Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst 87, 796–802.[CrossRef]
    [Google Scholar]
  5. Castellsague, X., Bosch, F. X. & Munoz, N. ( 2002; ). Environmental co-factors in HPV carcinogenesis. Virus Res 89, 191–199.[CrossRef]
    [Google Scholar]
  6. Da Costa, M. M., Hogeboom, C. J., Holly, E. A. & Palefsky, J. M. ( 2002; ). Increased risk of high-grade anal neoplasia associated with a human papillomavirus type 16 E6 sequence variant. J Infect Dis 185, 1229–1237.[CrossRef]
    [Google Scholar]
  7. Ellis, J. R., Keating, P. J., Baird, J. & 7 other authors ( 1995; ). The association of an HPV16 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer. Nat Med 1, 464–470.[CrossRef]
    [Google Scholar]
  8. Giannoudis, A. & Herrington, C. S. ( 2001; ). Human papillomavirus variants and squamous neoplasia of the cervix. J Pathol 193, 295–302.[CrossRef]
    [Google Scholar]
  9. Gravitt, P. E., Peyton, C. L., Apple, R. J. & Wheeler, C. M. ( 1998; ). Genotyping of 27 human papillomavirus types by using L1 consensus PCR products by a single-hybridization, reverse line blot detection method. J Clin Microbiol 36, 3020–3027.
    [Google Scholar]
  10. Hildesheim, A. & Wang, S. S. ( 2002; ). Host and viral genetics and risk of cervical cancer: a review. Virus Res 89, 229–240.[CrossRef]
    [Google Scholar]
  11. Hildesheim, A., Herrero, R., Castle, P. E. & 13 other authors ( 2001a; ). HPV co-factors related to the development of cervical cancer: results from a population-based study in Costa Rica. Br J Cancer 84, 1219–1226.[CrossRef]
    [Google Scholar]
  12. Hildesheim, A., Schiffman, M., Bromley, C. & 12 other authors ( 2001b; ). Human papillomavirus type 16 variants and risk of cervical cancer. J Natl Cancer Inst 93, 315–318.[CrossRef]
    [Google Scholar]
  13. Icenogle, J. P., Laga, M., Miller, D., Manoka, A. T., Tucker, R. A. & Reeves, W. C. ( 1992; ). Genotypes and sequence variants of human papillomavirus DNAs from human immunodeficiency virus type 1-infected women with cervical intraepithelial neoplasia. J Infect Dis 166, 1210–1216.[CrossRef]
    [Google Scholar]
  14. Kammer, C., Tommasino, M., Syrjanen, S., Delius, H., Hebling, U., Warthorst, U., Pfister, H. & Zehbe, I. ( 2002; ). Variants of the long control region and the E6 oncogene in European human papillomavirus type 16 isolates: implications for cervical disease. Br J Cancer 86, 269–273.[CrossRef]
    [Google Scholar]
  15. Londesborough, P., Ho, L., Terry, G., Cuzick, J., Wheeler, C. & Singer, A. ( 1996; ). Human papillomavirus genotype as a predictor of persistence and development of high-grade lesions in women with minor cervical abnormalities. Int J Cancer 69, 364–368.[CrossRef]
    [Google Scholar]
  16. Lorincz, A. T., Reid, R., Jenson, A. B., Greenberg, M. D., Lancaster, W. & Kurman, R. J. ( 1992; ). Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol 79, 328–337.[CrossRef]
    [Google Scholar]
  17. Lorincz, A. T., Castle, P. E., Sherman, M. E. & 7 other authors ( 2002; ). Viral load of human papillomavirus and risk of CIN3 or cervical cancer. Lancet 360, 228–229.[CrossRef]
    [Google Scholar]
  18. Maciag, P. C. & Villa, L. L. ( 1999; ). Genetic susceptibility to HPV infection and cervical cancer. Braz J Med Biol Res 32, 915–922.[CrossRef]
    [Google Scholar]
  19. Mehta, C. R. & Patel, N. R. ( 1995; ). Exact logistic regression: theory and examples. Stat Med 14, 2143–2160.[CrossRef]
    [Google Scholar]
  20. Minkoff, H., Feldman, J., DeHovitz, J., Landesman, S. & Burk, R. ( 1998; ). A longitudinal study of human papillomavirus carriage in human immunodeficiency virus-infected and human immunodeficiency virus-uninfected women. Am J Obstet Gynecol 178, 982–986.[CrossRef]
    [Google Scholar]
  21. Moreno, V., Munoz, N., Bosch, F. X. & 7 other authors ( 1995; ). Risk factors for progression of cervical intraepithelial neoplasm grade III to invasive cervical cancer. Cancer Epidemiol Biomarkers Prev 4, 459–467.
    [Google Scholar]
  22. Munoz, N., Bosch, F. X., de Sanjose, S. & 7 other authors ( 1992; ). The causal link between human papillomavirus and invasive cervical cancer: a population-based case–control study in Colombia and Spain. Int J Cancer 52, 743–749.[CrossRef]
    [Google Scholar]
  23. Munoz, N., Bosch, F. X., de Sanjose, S., Herrero, R., Castellsague, X., Shah, K. V., Snijders, P. J. & Meijer, C. J. ( 2003; ). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348, 518–527.[CrossRef]
    [Google Scholar]
  24. Palefsky, J. M., Minkoff, H., Kalish, L. A. & 7 other authors ( 1999; ). Cervicovaginal human papillomavirus infection in human immunodeficiency virus-1 (HIV)-positive and high-risk HIV-negative women. J Natl Cancer Inst 91, 226–236.[CrossRef]
    [Google Scholar]
  25. Perez-Gallego, L., Moreno-Bueno, G., Sarrio, D., Suarez, A., Gamallo, C. & Palacios, J. ( 2001; ). Human papillomavirus-16 E6 variants in cervical squamous intraepithelial lesions from HIV-negative and HIV-positive women. Am J Clin Pathol 116, 143–148.[CrossRef]
    [Google Scholar]
  26. Stoppler, M. C., Ching, K., Stoppler, H., Clancy, K., Schlegel, R. & Icenogle, J. ( 1996; ). Natural variants of the human papillomavirus type 16 E6 protein differ in their abilities to alter keratinocyte differentiation and to induce p53 degradation. J Virol 70, 6987–6993.
    [Google Scholar]
  27. Sun, X. W., Kuhn, L., Ellerbrock, T. V., Chiasson, M. A., Bush, T. J. & Wright, T. C., Jr ( 1997; ). Human papillomavirus infection in women infected with the human immunodeficiency virus. N Engl J Med 337, 1343–1349.[CrossRef]
    [Google Scholar]
  28. Ting, Y. & Manos, M. M. ( 1990; ). Detection and typing of genital human papillomaviruses. In PCR Protocols: a Guide to Methods and Applications, pp. 356–367. Edited by M. Innis, D. Gelfand, J. Sninsky & T. White. San Diego, CA: Academic Press.
  29. van Belkum, A., Juffermans, L., Schrauwen, L., van Doornum, G., Burger, M. & Quint, W. ( 1995; ). Genotyping human papillomavirus type 16 isolates from persistently infected promiscuous individuals and cervical neoplasia patients. J Clin Microbiol 33, 2957–2962.
    [Google Scholar]
  30. Vernon, S. D., Reeves, W. C., Clancy, K. A., Laga, M., St Louis, M., Gary, H. E., Jr, Ryder, R. W., Manoka, A. T. & Icenogle, J. P. ( 1994; ). A longitudinal study of human papillomavirus DNA detection in human immunodeficiency virus type 1-seropositive and -seronegative women. J Infect Dis 169, 1108–1112.[CrossRef]
    [Google Scholar]
  31. Walboomers, J. M., Jacobs, M. V., Manos, M. M. & 7 other authors ( 1999; ). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189, 12–19.[CrossRef]
    [Google Scholar]
  32. Welters, M. J., de Jong, A., van den Eeden, S. J. & 10 other authors ( 2003; ). Frequent display of human papillomavirus type 16 E6-specific memory T-helper cells in the healthy population as witness of previous viral encounter. Cancer Res 63, 636–641.
    [Google Scholar]
  33. Xi, L. F., Koutsky, L. A., Galloway, D. A., Kuypers, J., Hughes, J. P., Wheeler, C. M., Holmes, K. K. & Kiviat, N. B. ( 1997; ). Genomic variation of human papillomavirus type 16 and risk for high grade cervical intraepithelial neoplasia. J Natl Cancer Inst 89, 796–802.[CrossRef]
    [Google Scholar]
  34. Xi, L. F., Critchlow, C. W., Wheeler, C. M. & 9 other authors ( 1998; ). Risk of anal carcinoma in situ in relation to human papillomavirus type 16 variants. Cancer Res 58, 3839–3844.
    [Google Scholar]
  35. Xi, L. F., Carter, J. J., Galloway, D. A. Kuypers J., Hughes, J. P., Lee, S. K., Adam, D.E., Kiviat, N. B. & Koutsky, L. A. ( 2002; ). Acquisition and natural history of human papillomavirus type 16 variant infection among a cohort of female university students. Cancer Epidemiol Biomarkers Prev 11, 343–351.
    [Google Scholar]
  36. Yamada, T., Wheeler, C. M., Halpern, A. L., Stewart, A. C., Hildesheim, A. & Jenison, S. A. ( 1995; ). Human papillomavirus type 16 variant lineages in United States populations characterized by nucleotide sequence analysis of the E6, L2, and L1 coding segments. J Virol 69, 7743–7753.
    [Google Scholar]
  37. Yamada, T., Manos, M. M., Peto, J., Greer, C. E., Munoz, N., Bosch, F. X. & Wheeler, C. M. ( 1997; ). Human papillomavirus type 16 sequence variation in cervical cancers: a worldwide perspective. J Virol 71, 2463–2472.
    [Google Scholar]
  38. Zehbe, I., Wilander, E., Delius, H. & Tommasino, M. ( 1998; ). Human papillomavirus 16 E6 variants are more prevalent in invasive cervical carcinoma than the prototype. Cancer Res 58, 829–833.
    [Google Scholar]
  39. Zehbe, I., Voglino, G., Wilander, Delius, H., Marongiu, A., Edler, L., Klimek, F., Andersson, S. & Tommasino, M. ( 2001; ). p53 codon 72 polymorphism and various human papillomavirus 16 E6 genotypes are risk factors for cervical cancer development. Cancer Res 61, 608–611.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19694-0
Loading
/content/journal/jgv/10.1099/vir.0.19694-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error