Nipah virus conforms to the rule of six in a minigenome replication assay Free

Abstract

To study the replication of Nipah virus (NiV), a minigenome replication assay that does not require the use of infectious virus was developed. The minigenome was constructed to encode a NiV vRNA analogue containing the gene for chloramphenicol acetyltransferase (CAT) under the control of putative NiV transcription motifs and flanked by the NiV genomic termini. CAT protein was detected only when plasmids encoding the NiV minigenome, nucleocapsid protein (N), phosphoprotein (P) and polymerase protein (L) were transfected into CV1 cells. To determine whether NiV conforms to the rule of six, a series of plasmids encoding minigenomes that differed in length by a single nucleotide was tested in the replication assay. CAT production was detected only with the minigenome whose length was an even multiple of six. The replication assay was also used to show that the N, P and L proteins of NiV recognize -acting sequences in the genomic termini of Hendra virus (HeV) but not measles virus. While these results suggest that NiV uses a replication strategy that is similar to those of other paramyxoviruses, they also support the inclusion of NiV and HeV in a separate genus within the subfamily .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19685-0
2004-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/3/vir850701.html?itemId=/content/journal/jgv/10.1099/vir.0.19685-0&mimeType=html&fmt=ahah

References

  1. Bankamp B., Kearney S. P., Liu X., Bellini W. J., Rota P. A. 2002; Activity of polymerase proteins of vaccine and wild-type measles virus strains in a minigenome replication assay. J Virol 76:7073–7081
    [Google Scholar]
  2. Baron M. D., Barrett T. 2000; Rinderpest viruses lacking the C and V proteins show specific defects in growth and transcription of viral RNAs. J Virol 74:2603–2611
    [Google Scholar]
  3. Cadd T., Garcin D., Tapparel C., Itoh M., Homma M., Roux L., Curran J., Kolakofsky D. 1996; The Sendai paramyxovirus accessory C proteins inhibit viral genome amplification in a promoter-specific fashion. J Virol 70:5067–5074
    [Google Scholar]
  4. Calain P., Roux L. 1993; The rule of six, a basic feature for efficient replication of Sendai virus interfering RNA. J Virol 67:4822–4830
    [Google Scholar]
  5. Chua K. B., Bellini W. J., Rota P. A. 19 other authors 2000; Nipah virus: a recently emergent deadly paramyxovirus. Science 288:1432–1435
    [Google Scholar]
  6. Curran J. A., Kolakofsky D. 1991; Rescue of a Sendai virus DI genome by other parainfluenza viruses: implications for genome replication. Virology 182:168–176
    [Google Scholar]
  7. Curran J., Kolakofsky D. 1999; Replication of paramyxoviruses. Adv Virus Res 54:403–422
    [Google Scholar]
  8. Curran J., Marq J. B., Kolakofsky D. 1992; The Sendai virus nonstructural C proteins specifically inhibit viral mRNA synthesis. Virology 189:647–656
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  10. Gallagher S. A. 1996; DNA detection using the DNA-binding fluorochrome Hoechst 33258. p. A.3D.3 In Current Protocols in Molecular Biology , 1st edn. vol 3F Edited by Ausubel A., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley & Sons;
    [Google Scholar]
  11. Harcourt B. H., Tamin A., Ksiazek T. G., Rollin P. E., Anderson L. J., Bellini W. J., Rota P. A. 2000; Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 271:334–349
    [Google Scholar]
  12. Harcourt B. H., Tamin A., Halpin K., Ksiazek T. G., Rollin P. E., Bellini W. J., Rota P. A. 2001; Molecular characterization of the polymerase gene and genomic termini of Nipah virus. Virology 287:192–201
    [Google Scholar]
  13. Hausmann S., Jacques J. P., Kolakofsky D. 1996; Paramyxovirus RNA editing and the requirement for hexamer genome length. RNA 2:1033–1045
    [Google Scholar]
  14. Horikami S. M., Smallwood S., Moyer S. A. 1996; The Sendai virus V protein interacts with the NP protein to regulate viral genome RNA replication. Virology 15:383–390
    [Google Scholar]
  15. Kolakofsky D., Pelet T., Garcin D., Hausmann S., Curran J., Roux L. 1998; Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 72:891–899
    [Google Scholar]
  16. Mayo M. 2002; A summary of taxonomic changes recently approved by ICTV. Arch Virol 147:1655–1656
    [Google Scholar]
  17. Pelet T., Marq J. B., Sakai Y., Wakao S., Gotoh H., Curran J. 1996; Rescue of Sendai virus cDNA templates with cDNA clones expressing parainfluenzavirus type 3 N. P and L proteins. J Gen Virol 77:2465–2469
    [Google Scholar]
  18. Reutter G. L., Cortese-Grogan C., Wilson J., Moyer S. A. 2001; Mutations in the measles virus C protein that up regulate viral RNA synthesis. Virology 285:100–109
    [Google Scholar]
  19. Rima B. K., Alexander D. J., Billeter M. A. 7 other authors 1995; Family Paramyxoviridae . In Virus Taxonomy . Sixth Report of the International Committee on Taxonomy of Viruses . pp  268–274 Edited by Murphy F. A., Fauquet C. M., Bishop D. H. L., Ghabrial S. A., Jarvis A. W., Martelli G. P., Mayo M. A., Summers M. D. Vienna & New York: Springer-Verlag;
  20. Shiell B. J., Gardner D. R., Crameri G., Eaton B. T., Michalski W. P. 2003; Sites of phosphorylation of P and V proteins from Hendra and Nipah viruses: newly emerged members of Paramyxoviridae . Virus Res 70:55–65
    [Google Scholar]
  21. Sidhu M. S., Chan J., Kaelin K. 7 other authors 1995; Rescue of synthetic measles virus minireplicons: measles genomic termini direct efficient expression and propagation of a reporter gene. Virology 208:800–807
    [Google Scholar]
  22. Tapparel C., Hausmann S., Pelet T., Curran J., Kolakofsky D., Roux L. 1977; Inhibition of Sendai virus genome replication due to promoter-increased selectivity: a possible role for the accessory C proteins. J Virol 71:9588–9599
    [Google Scholar]
  23. Tober C., Seufert M., Schneider H., Billeter M. A., Johnston I. C., Niewiesk S., ter Meulen V., Schneider-Schaulies S. 1998; Expression of measles virus V protein is associated with pathogenicity and control of viral RNA synthesis. J Virol 72:8124–8132
    [Google Scholar]
  24. Vidal S., Kolakofsky D. 1989; Modified model for the switch from Sendai virus transcription to replication. J Virol 63:1951–1958
    [Google Scholar]
  25. Wang L. F., Yu M., Hansson E., Pritchard L. I., Shiell B., Michalski W. P., Eaton B. T. 2000; The exceptionally large genome of Hendra virus: support for creation of a new genus within the family Paramyxoviridae . J Virol 74:9972–9979
    [Google Scholar]
  26. Yu M., Hansson E., Langedijk J. P., Eaton B. T., Wang L. F. 1998a; The attachment protein of Hendra virus has high structural similarity but limited primary sequence homology compared with viruses in the genus Paramyxovirus . Virology 251:227–233
    [Google Scholar]
  27. Yu M., Hansson E., Shiell B., Michalski W., Eaton B. T., Wang L. F. 1998b; Sequence analysis of the Hendra virus nucleoprotein gene: comparison with other members of the subfamily Paramyxovirinae . J Gen Virol 79:1775–1780
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19685-0
Loading
/content/journal/jgv/10.1099/vir.0.19685-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed