1887

Abstract

A stable full-length infectious cDNA clone of the Oshima strain of (Far-Eastern subtype) was developed by a long high-fidelity RT-PCR and one-step cloning procedure. The infectious clone (O-IC) had four amino acid substitutions and produced smaller plaques when compared with the parent Oshima 5-10 strain. Using site-directed mutagenesis, the substitutions were reverted to restore the parent virus sequence (O-IC-pt). Although genetically identical, parent virus Oshima 5-10 and virus recovered from O-IC-pt demonstrated some biological differences that are possibly explained by the presence of quasispecies with differing virulence characteristics within the original virus population. These observations may have implications for vaccines based on modified infectious clones. It was also demonstrated that the amino acid substitution E-S→P at position 40 in the envelope (E) glycoprotein was responsible for plaque size reduction, reduced infectious virus yields in cell culture and reduced mouse neurovirulence. Additionally, two amino acid substitutions in the non-structural (NS)5 protein (virus RNA-dependent RNA polymerase) NS5-V→A and NS5-R→K also contributed to attenuation of virulence in mice, but did not demonstrate a noticeable biological effect in baby hamster kidney cell culture. Comparative neurovirulence tests revealed how the accumulation of individual mutations (E-S→P, NS5-V→A and NS5-R→K) can result in the attenuation of a virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19668-0
2004-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/4/vir851007.html?itemId=/content/journal/jgv/10.1099/vir.0.19668-0&mimeType=html&fmt=ahah

References

  1. Allison S. L., Schalich J., Stiasny K., Mandl C. W., Heinz F. X. 2001; Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J Virol 75:4268–4275
    [Google Scholar]
  2. Barrett A. D., Gould E. A. 1986; Antibody-mediated early death in vivo after infection with yellow fever virus. J Gen Virol 67:2539–2542
    [Google Scholar]
  3. Bredenbeek P. J., Kooi E. A., Lindenbach B., Huijkman N., Rice C. M., Spaan W. J. 2003; A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication. J Gen Virol 84:1261–1268
    [Google Scholar]
  4. Campbell M. S., Pletnev A. G. 2000; Infectious cDNA clones of Langat tick-borne flavivirus that differ from their parent in peripheral neurovirulence. Virology 269:225–237
    [Google Scholar]
  5. Cecilia D., Gould E. A. 1991; Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology 181:70–77
    [Google Scholar]
  6. Chambers T. J., Hahn C. S., Galler R., Rice C. M. 1990; Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688
    [Google Scholar]
  7. Chiba N., Iwasaki T., Mizutani T., Kariwa H., Kurata T., Takashima I. 1999; Pathogenicity of tick-borne encephalitis virus isolated in Hokkaido, Japan in mouse model. Vaccine 17:779–787
    [Google Scholar]
  8. Dumpis U., Crook D., Oksi J. 1999; Tick-borne encephalitis. Clin Infect Disease 28:882–890
    [Google Scholar]
  9. Ecker M., Allison S. L., Meinxner T., Heinz F. X. 1999; Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. J Gen Virol 80:179–185
    [Google Scholar]
  10. Forwood J. K., Brooks A., Briggs L. J., Xiao C. Y., Jans D. A., Vasudevan S. G. 1999; The 37-amino-acid interdomain of dengue virus NS5 protein contains a functional NLS and inhibitory CK2 site. Biochem Biophys Res Commun 257:731–737
    [Google Scholar]
  11. Goto A., Hayasaka D., Yoshii K., Mizutani T., Kariwa H., Takashima I. 2002; Genetic and biological comparison of tick-borne encephalitis viruses from Hokkaido and Far-Eastern Russia. Jpn J Vet Res 49:297–307
    [Google Scholar]
  12. Goto A., Hayasaka D., Yoshii K., Mizutani T., Kariwa H., Takashima I. 2003; A BHK-21 cell culture-adapted tick-borne encephalitis virus mutant is attenuated for neuroinvasiveness. Vaccine 21:4043–4051
    [Google Scholar]
  13. Gritsun T. S., Gould E. A. 1995; Infectious transcripts of tick-borne encephalitis virus, generated in days by RT-PCR. Virology 214:611–618
    [Google Scholar]
  14. Gritsun T. S., Gould E. A. 1998; Development and analysis of a tick-borne encephalitis virus infectious clone using a novel and rapid strategy. J Virol Methods 76:109–120
    [Google Scholar]
  15. Gritsun T. S., Holmes E. C., Gould E. A. 1995; Analysis of flavivirus envelope proteins reveals variable domains that reflect their antigenicity and may determine their pathogenesis. Virus Res 35:307–321
    [Google Scholar]
  16. Gritsun T. S., Venugopal K., Zanotto P. M. 8 other authors 1997; Complete sequence of two tick-borne flaviviruses isolated from Siberia and the UK: analysis and significance of the 5′ and 3′-UTRs. Virus Res 49:27–39
    [Google Scholar]
  17. Gritsun T. S., Desai A., Gould E. A. 2001; The degree of attenuation of tick-borne encephalitis virus depends on the cumulative effects of point mutations. J Gen Virol 82:1667–1675
    [Google Scholar]
  18. Gritsun T. S., Frolova T. V., Zhankov A. I., Armesto M., Turner S. L., Frolova M. P., Pogodina V. V., Lashkevich V. A., Gould E. A. 2003a; Characterization of a siberian virus isolated from a patient with progressive chronic tick-borne encephalitis. J Virol 77:25–36
    [Google Scholar]
  19. Gritsun T. S., Lashkevich V. A., Gould E. A. 2003b; Tick-borne encephalitis. Antiviral Res 57:129–146
    [Google Scholar]
  20. Gualano R. C., Pryor M. J., Cauchi M. R., Wright P. J., Davidson A. D. 1998; Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA. J Gen Virol 79:437–446
    [Google Scholar]
  21. Haglund M., Gunther G. 2003; Tick-borne encephalitis-pathogenesis, clinical course and long-term follow-up. Vaccine 21:Suppl 1S11–18
    [Google Scholar]
  22. Hayasaka D., Suzuki Y., Kariwa H., Ivanov L., Volkov V., Demenev V., Mizutani T., Gojobori T., Takashima I. 1999; Phylogenetic and virulence analysis of tick-borne encephalitis viruses from Japan and Far-Eastern Russia. J Gen Virol 80:3127–3135
    [Google Scholar]
  23. Hayasaka D., Ivanov L., Leonova G. N., Goto A., Yoshii K., Mizutani T., Kariwa H., Takashima I. 2001; Distribution and characterization of tick-borne encephalitis viruses from Siberia and Far-Eastern Asia. J Gen Virol 82:1319–1328
    [Google Scholar]
  24. Heinz F. X. 2003; Molecular aspects of TBEV research. Vaccine 21:Suppl 1S3–S10
    [Google Scholar]
  25. Heinz F. X., Allison S. L. 2000; Structures and mechanisms in flavivirus fusion. Adv Virus Res 55:231–269
    [Google Scholar]
  26. Heinz F. X., Collett M. S., Purcell R. H., Gould E. A., Howard C. R., Houghton M., Moormann R. J. M., Rice C. M., Thiel H. J. 2000; Family Flaviviridae . In Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses pp  859–878 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
    [Google Scholar]
  27. Holzmann H., Stiasny K., Ecker M., Kunz C., Heinz F. X. 1997; Characterization of monoclonal antibody-escape mutants of tick-borne encephalitis virus with reduced neuroinvasiveness in mice. J Gen Virol 78:31–37
    [Google Scholar]
  28. Hurrelbrink R. J., McMinn P. C. 2001; Attenuation of Murray Valley encephalitis virus by site-directed mutagenesis of the hinge and putative receptor-binding regions of the envelope protein. J Virol 75:7692–7702
    [Google Scholar]
  29. Hurrelbrink R. J., Nestorowicz A., McMinn P. C. 1999; Characterization of infectious Murray Valley encephalitis virus derived from a stably cloned genome-length cDNA. J Gen Virol 80:3115–3125
    [Google Scholar]
  30. Jiang W. R., Lowe A., Higgs S., Reid H., Gould E. A. 1993; Single amino acid codon changes detected in louping ill virus antibody-resistant mutants with reduced neurovirulence. J Gen Virol 74:931–935
    [Google Scholar]
  31. Kapoor M., Zhang L., Mohan P. M., Padmanabhan R. 1995; Synthesis and characterization of an infectious dengue virus type-2 RNA genome (New Guinea C strain). Gene 162:175–180
    [Google Scholar]
  32. Khromykh A. A., Westaway E. G. 1994; Completion of Kunjin virus RNA sequence and recovery of an infectious RNA transcribed from stably cloned full-length cDNA. J Virol 68:4580–4588
    [Google Scholar]
  33. Khromykh A. A., Kenney M. T., Westaway E. G. 1998; trans -Complementation of flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon-expressing BHK cells. J Virol 72:7270–7279
    [Google Scholar]
  34. Kinney R. M., Butrapet S., Chang G. J., Tsuchiya K. R., Roehrig J. T., Bhamarapravati N., Gubler D. J. 1997; Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53. Virology 230:300–308
    [Google Scholar]
  35. Korenberg E. I., Kovalevskii Y. V. 1999; Main features of tick-borne encephalitis eco-epidemiology in Russia. Zentbl Bakteriol 289:525–539
    [Google Scholar]
  36. Lai C. J., Zhao B. T., Hori H., Bray M. 1991; Infectious RNA transcribed from stably cloned full-length cDNA of dengue type 4 virus. Proc Natl Acad Sci U S A 88:5139–5143
    [Google Scholar]
  37. Lee E., Lobigs M. 2000; Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J Virol 74:8867–8875
    [Google Scholar]
  38. Lindenbach S. D., Rice C. M. 2001; Flaviviridae : the viruses and their replication. In Fields Virology , 4th edn. pp  991–1041 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  39. Mandl C. W., Ecker M., Holzmann H., Kunz C., Heinz F. X. 1997; Infectious cDNA clones of tick-borne encephalitis virus European subtype prototypic strain Neudoerfl and high virulence strain Hypr. J Gen Virol 78:1049–1057
    [Google Scholar]
  40. Mandl C. W., Holzmann H., Meixner T., Rauscher S., Stadler P. F., Allison S. L., Heinz F. X. 1998; Spontaneous and engineered deletions in the 3′ noncoding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus. J Virol 72:2132–2140
    [Google Scholar]
  41. Mandl C. W., Allison S. L., Holzmann H., Meixner T., Heinz F. X. 2000; Attenuation of tick-borne encephalitis virus by structure-based site-specific mutagenesis of a putative flavivirus receptor binding site. J Virol 74:9601–9609
    [Google Scholar]
  42. Mandl C. W., Kroschewski H., Allison S. L., Kofler R., Holzmann H., Meixner T., Heinz F. X. 2001; Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J Virol 75:5627–5637
    [Google Scholar]
  43. McMinn P. C. 1997; The molecular basis of virulence of the encephalitogenic flaviviruses. J Gen Virol 78:2711–2722
    [Google Scholar]
  44. Monath T. P., Arroyo J., Levenbook I., Zhang Z. X., Catalan J., Draper K., Guirakhoo F. 2002; Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live, attenuated vaccines. J Virol 76:1932–1943
    [Google Scholar]
  45. Pletnev A. G. 2001; Infectious cDNA clone of attenuated Langat tick-borne flavivirus (strain E5) and a 3′ deletion mutant constructed from it exhibit decreased neuroinvasiveness in immunodeficient mice. Virology 282:288–300
    [Google Scholar]
  46. Polo S., Ketner G., Levis R., Falgout B. 1997; Infectious RNA transcripts from full-length dengue virus type 2 cDNA clones made in yeast. J Virol 71:5366–5374
    [Google Scholar]
  47. Proutski V., Gould E. A., Holmes E. C. 1997; Secondary structure of the 3′ untranslated region of flaviviruses: similarities and differences. Nucleic Acids Res 25:1194–1202
    [Google Scholar]
  48. Puri B., Polo S., Hayes C. G., Falgout B. 2000; Construction of a full length infectious clone for dengue-1 virus Western Pacific, 74 strain. Virus Genes 20:57–63
    [Google Scholar]
  49. Rauscher S., Flamm C., Mandl C. W., Heinz F. X., Stadler P. F. 1997; Secondary structure of the 3′-noncoding region of flavivirus genomes: comparative analysis of base pairing probabilities. RNA 3:779–791
    [Google Scholar]
  50. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C. 1995; The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–298
    [Google Scholar]
  51. Rice C. M., Lenches E. M., Eddy S. R., Shin S. J., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733
    [Google Scholar]
  52. Rice C. M. A., Grakouli R., Galler R., Chambers T. J. 1989; Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. Nature New Biol 1:285–296
    [Google Scholar]
  53. Ruggli N., Rice C. M. 1999; Functional cDNA clones of the Flaviviridae : strategies and applications. Adv Virus Res 53:183–207
    [Google Scholar]
  54. Shi P. Y., Tilgner M., Lo M. K., Kent K. A., Bernard K. A. 2002; Infectious cDNA clone of the epidemic West Nile virus from New York City. J Virol 76:5847–5856
    [Google Scholar]
  55. Shope R. E. 1980; Medical significance of togaviruses: an overview of diseases caused by togaviruses in man and domestic and wild vertebrate animals. In The Togaviruses pp  47–82 Edited by Schlesinger R. W.
    [Google Scholar]
  56. Sriburi R., Keelapang P., Duangchinda T., Pruksakorn S., Maneekarn N., Malasit P., Sittisombut N. 2001; Construction of infectious dengue 2 virus cDNA clones using high copy number plasmid. J Virol Methods 92:71–82
    [Google Scholar]
  57. Sumiyoshi H., Hoke C. H., Trent D. W. 1992; Infectious Japanese encephalitis virus RNA can be synthesized from in vitro-ligated cDNA templates. J Virol 66:5425–5431
    [Google Scholar]
  58. Suss J. 2003; Epidemiology and ecology of TBE relevant to the production of effective vaccines. Vaccine 21(Suppl. 1):S19–35
    [Google Scholar]
  59. Takashima I., Morita K., Chiba M. 8 other authors 1997; A case of tick-borne encephalitis in Japan and isolation of the virus. J Clin Microbiol 35:1943–1947
    [Google Scholar]
  60. Takeda T., Ito T., Osada M., Takahashi K., Takashima I. 1999; Isolation of tick-borne encephalitis virus from wild rodents and a seroepizootiologic survey in Hokkaido, Japan. Am J Trop Med Hyg 60:287–291
    [Google Scholar]
  61. Wallner G., Mandl C. W., Kunz C., Heinz F. X. 1995; The flavivirus 3′-noncoding region: extensive size heterogeneity independent of evolutionary relationships among strains of tick-borne encephalitis virus. Virology 213:169–178
    [Google Scholar]
  62. Yamshchikov V., Mishin V., Cominelli F. 2001a; A new strategy in design of +RNA virus infectious clones enabling their stable propagation in E. coli . Virology 281:272–280
    [Google Scholar]
  63. Yamshchikov V. F., Wengler G., Perelygin A. A., Brinton M. A., Compans R. W. 2001b; An infectious clone of the West Nile flavivirus. Virology 281:294–304
    [Google Scholar]
  64. Yun S. I., Kim S. Y., Rice C. M., Lee Y. M. 2003; Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol 77:6450–6465
    [Google Scholar]
  65. Zhang F., Huang Q., Ma W., Jiang S., Fan Y., Zhang H. 2001; Amplification and cloning of the full-length genome of Japanese encephalitis virus by a novel long RT-PCR protocol in a cosmid vector. J Virol Methods 96:171–182
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19668-0
Loading
/content/journal/jgv/10.1099/vir.0.19668-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error