1887

Abstract

p53 plays an important role in tumour suppression in cells exposed to some genotoxic stresses. We found that the p53 protein level was increased in a variety of cell lines infected with human herpesvirus 6 (HHV-6). Because the elevation in p53 began very soon after infection (4 h) and did not occur with UV-inactivated virus infection, it appeared to require the expression of one or more viral immediate-early (IE) genes. To elucidate the mechanism of p53 induction, we investigated its regulation at the protein level. Pulse–chase analysis showed that the stability of p53 increased in HHV-6-infected cells. In addition, the ubiquitination of p53 decreased after infection, indicating that the stability of p53 was increased through deubiquitination. We showed by confocal microscopy that the additional p53 mainly localized to the cytoplasm and that p53 was retained in the cytoplasm even after UV irradiation, but that it translocated into the nucleus in mock-infected cells. Furthermore, DNA fragmentation analysis, a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) assay and annexin V staining showed that infected cells were resistant to UV-induced apoptosis. These results lead us to propose that HHV-6 has a mechanism for retaining p53 within the cytoplasm and protects the infected cells from apoptosis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19626-0
2004-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/4/vir850869.html?itemId=/content/journal/jgv/10.1099/vir.0.19626-0&mimeType=html&fmt=ahah

References

  1. Ashcroft M., Kubbutat M. H., Vousden K. H. 1999; Regulation of p53 function and stability by phosphorylation. Mol Cell Biol 19:1751–1758
    [Google Scholar]
  2. Ashcroft M., Taya Y., Vousden K. H. 2000; Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol 20:3224–3233
    [Google Scholar]
  3. Blattner C., Tobiasch E., Litfen M., Rahmsdorf H. J., Herrlich P. 1999; DNA damage induced p53 stabilization: no indication for an involvement of p53 phosphorylation. Oncogene 18:1723–1732
    [Google Scholar]
  4. Bonin L. R., McDougall J. K. 1997; Human cytomegalovirus IE2 86-kilodalton protein binds p53 but does not abrogate G1 checkpoint function. J Virol 71:5861–5870
    [Google Scholar]
  5. Dumaz N., Meek D. W. 1999; Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J 18:7002–7010
    [Google Scholar]
  6. el-Deiry W. S., Tokino T., Velculescu V. E. 7 other authors 1993; WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825
    [Google Scholar]
  7. Fortunato E. A., Spector D. H. 1998; p53 and RPA are sequestered in viral replication centers in the nuclei of cells infected with human cytomegalovirus. J Virol 72:2033–2039
    [Google Scholar]
  8. Friborg J. Jr, Kong W., Hottiger M. O., Nabel G. J. 1999; p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402:889–894
    [Google Scholar]
  9. Haupt Y., Maya R., Kazaz A., Oren M. 1997; Mdm2 promotes the rapid degradation of p53. Nature 387:296–299
    [Google Scholar]
  10. Hobbs W. E. II, DeLuca N. A. 1999; Perturbation of cell cycle progression and cellular gene expression as a function of herpes simplex virus ICP0. J Virol 73:8245–8255
    [Google Scholar]
  11. Honda R., Tanaka H., Yasuda H. 1997; Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27
    [Google Scholar]
  12. Isegawa Y., Mukai T., Nakano K. 10 other authors 1999; Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B. J Virol 73:8053–8063
    [Google Scholar]
  13. Josephs S. F., Salahuddin S. Z., Ablashi D. V., Schachter F., Wong-Staal F., Gallo R. C. 1986; Genomic analysis of the human B-lymphotropic virus (HBLV). Science 234:601–603
    [Google Scholar]
  14. Kashanchi F., Araujo J., Doniger J. 10 other authors 1997; Human herpesvirus 6 (HHV-6) ORF-1 transactivating gene exhibits malignant transforming activity and its protein binds to p53. Oncogene 14:359–367
    [Google Scholar]
  15. Kastan M. B., Zhan Q., el-Deiry W. S., Carrier F., Jacks T., Wlash W. V., Plunkett B. S., Vogelstein B., Fornace A. J. Jr 1992; A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597
    [Google Scholar]
  16. Katano H., Ogawa-Goto K., Hasegawa H., Kurata T., Sata T. 2001; Human-herpesvirus-8-encoded K8 protein colocalizes with the promyelocytic leukemia protein (PML) bodies and recruits p53 to the PML bodies. Virology 286:446–455
    [Google Scholar]
  17. Kondo K., Kondo T., Okuno T., Takahashi M., Yamanishi K. 1991; Latent human herpesvirus 6 infection of human monocytes/macrophages. J Gen Virol 72:1401–1408
    [Google Scholar]
  18. Kovacs A., Weber M. L., Burns L. J., Jacob H. S., Vercellotti G. M. 1996; Cytoplasmic sequestration of p53 in cytomegalovirus-infected human endothelial cells. Am J Pathol 149:1531–1539
    [Google Scholar]
  19. Kubbutat M. H., Jones S. N., Vousden K. H. 1997; Regulation of p53 stability by Mdm2. Nature 387:299–303
    [Google Scholar]
  20. Li M., Chen D., Shiloh A., Luo J., Nikolaev A. Y., Qin J., Gu W. 2002; Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416:648–653
    [Google Scholar]
  21. Ling Y. H., Liebes L., Jiang J. D., Holland J. F., Elliott P. J., Adams J., Muggia F. M., Perez-Soler R. 2003; Mechanisms of proteasome inhibitor PS-341-induced G(2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin Cancer Res 9:1145–1154
    [Google Scholar]
  22. Lu X., Lane D. P. 1993; Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes?. Cell 75:765–778
    [Google Scholar]
  23. Lusso P., Markham P. D., Tschachler E., di Marzo Veronese F., Salahuddin S. Z., Ablashi D. V., Pahwa S., Krohn K., Gallo R. C. 1988; In vitro cellular tropism of human B-lymphotropic virus (human herpesvirus-6). J Exp Med 167:1659–1670
    [Google Scholar]
  24. McGeoch D. J. 1989; The genomes of the human herpesviruses: contents, relationships, and evolution. Annu Rev Microbiol 43:235–265
    [Google Scholar]
  25. McGeoch D. J. 1990; Evolutionary relationships of virion glycoprotein genes in the S regions of alphaherpesvirus genomes. J Gen Virol 71:2361–2367
    [Google Scholar]
  26. Miyashita T., Reed J. C. 1995; Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299
    [Google Scholar]
  27. Mori Y., Yagi H., Shimamoto T., Isegawa Y., Sunagawa T., Inagi R., Kondo K., Tano Y., Yamanishi K. 1998; Analysis of human herpesvirus 6 U3 gene, which is a positional homolog of human cytomegalovirus UL 24 gene. Virology 249:129–139
    [Google Scholar]
  28. Mori Y., Dhepakson P., Shimamoto T., Ueda K., Gomi Y., Tani H., Matsuura Y., Yamanishi K. 2000; Expression of human herpesvirus 6B rep within infected cells and binding of its gene product to the TATA-binding protein in vitro and in vivo. J Virol 74:6096–6104
    [Google Scholar]
  29. Mori Y., Seya T., Huang H. L., Akkapaiboon P., Dhepakson P., Yamanishi K. 2002; Human herpesvirus 6 variant A but not variant B induces fusion from without in a variety of human cells through a human herpesvirus 6 entry receptor, CD46. J Virol 76:6750–6761
    [Google Scholar]
  30. Muganda P., Mendoza O., Hernandez J., Qian Q. 1994; Human cytomegalovirus elevates levels of the cellular protein p53 in infected fibroblasts. J Virol 68:8028–8034
    [Google Scholar]
  31. Muralidhar S., Doniger J., Mendelson E., Araujo J. C., Kashanchi F., Azumi N., Brady J. N., Rosenthal L. J. 1996; Human cytomegalovirus mtrII oncoprotein binds to p53 and down-regulates p53-activated transcription. J Virol 70:8691–8700
    [Google Scholar]
  32. Nakamura H., Li M., Zarycki J., Jung J. U. 2001; Inhibition of p53 tumor suppressor by viral interferon regulatory factor. J Virol 75:7572–7582
    [Google Scholar]
  33. Park J., Seo T., Hwang S., Lee D., Gwack Y., Choe J. 2000; The K-bZIP protein from Kaposi's sarcoma-associated herpesvirus interacts with p53 and represses its transcriptional activity. J Virol 74:11977–11982
    [Google Scholar]
  34. Rivas C., Thlick A. E., Parravicini C., Moore P. S., Chang Y. 2001; Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J Virol 75:429–438
    [Google Scholar]
  35. Roizmann B., Desrosiers R. C., Fleckenstein B., Lopez C., Minson A. C., Studdert M. J. 1992; The family Herpesviridae : an update. The Herpesvirus Study Group of the International Committee on Taxonomy of Viruses. Arch Virol 123:425–449
    [Google Scholar]
  36. Salahuddin S. Z., Ablashi D. V., Markham P. D. 8 other authors 1986; Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 234:596–601
    [Google Scholar]
  37. Santoro F., Kennedy P. E., Locatelli G., Malnati M. S., Berger E. A., Lusso P. 1999; CD46 is a cellular receptor for human herpesvirus 6. Cell 99:817–827
    [Google Scholar]
  38. Seo T., Park J., Lee D., Hwang S. G., Choe J. 2001; Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus binds to p53 and represses p53-dependent transcription and apoptosis. J Virol 75:6193–6198
    [Google Scholar]
  39. Shieh S. Y., Ikeda M., Taya Y., Prives C. 1997; DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334
    [Google Scholar]
  40. Speir E., Modali R., Huang E. S., Leon M. B., Shawl F., Finkel T., Epstein S. E. 1994; Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 265:391–394
    [Google Scholar]
  41. Takahashi K., Sonoda S., Higashi K., Kondo T., Takahashi H., Takahashi M., Yamanishi K. 1989; Predominant CD4 T-lymphocyte tropism of human herpesvirus 6-related virus. J Virol 63:3161–3163
    [Google Scholar]
  42. Takeda K., Haque M., Sunagawa T., Okuno T., Isegawa Y., Yamanishi K. 1997; Identification of a variant B-specific neutralizing epitope on glycoprotein H of human herpesvirus-6. J Gen Virol 78:2171–2178
    [Google Scholar]
  43. Takemoto M., Shimamoto T., Isegawa Y., Yamanishi K. 2001; The R3 region, one of three major repetitive regions of human herpesvirus 6, is a strong enhancer of immediate-early gene U95. J Virol 75:10149–10160
    [Google Scholar]
  44. Tedder R. S., Briggs M., Cameron C. H., Honess R., Robertson D., Whittle H. 1987; A novel lymphotropic herpesvirus [letter]. Lancet 2:390–392
    [Google Scholar]
  45. Wang J., Belcher J. D., Marker P. H., Wilcken D. E., Vercellotti G. M., Wang X. L. 2001; Cytomegalovirus inhibits p53 nuclear localization signal function. J Mol Med 78:642–647
    [Google Scholar]
  46. Wilcock D., Lane D. P. 1991; Localization of p53, retinoblastoma and host replication proteins at sites of viral replication in herpes-infected cells. Nature 349:429–431
    [Google Scholar]
  47. Xirodimas D., Saville M. K., Edling C., Lane D. P., Lain S. 2001; Different effects of p14ARF on the levels of ubiquitinated p53 and Mdm2 in vivo. Oncogene 20:4972–4983
    [Google Scholar]
  48. Zaika A., Marchenko N., Moll U. M. 1999; Cytoplasmically “sequestered” wild type p53 protein is resistant to Mdm2-mediated degradation. J Biol Chem 274:27474–27480
    [Google Scholar]
  49. Zhang Q., Gutsch D., Kenney S. 1994; Functional and physical interaction between p53 and BZLF1: implications for Epstein–Barr virus latency. Mol Cell Biol 14:1929–1938
    [Google Scholar]
  50. Zhong L., Hayward G. S. 1997; Assembly of complete, functionally active herpes simplex virus DNA replication compartments and recruitment of associated viral and cellular proteins in transient cotransfection assays. J Virol 71:3146–3160
    [Google Scholar]
  51. Zhu H., Shen Y., Shenk T. 1995; Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J Virol 69:7960–7970
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19626-0
Loading
/content/journal/jgv/10.1099/vir.0.19626-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error