1887

Abstract

Viroplasms are discrete structures formed in the cytoplasm of rotavirus-infected cells and constitute the replication machinery of the virus. The non-structural proteins NSP2 and NSP5 localize in viroplasms together with other viral proteins, including the polymerase VP1, VP3 and the main inner-core protein, VP2. NSP2 and NSP5 interact with each other, activating NSP5 hyperphosphorylation and the formation of viroplasm-like structures (VLSs). We have used NSP2 and NSP5 fused to the enhanced green fluorescent protein (EGFP) to investigate the localization of both proteins within viroplasms in virus-infected cells, as well as the dynamics of viroplasm formation. The number of viroplasms was shown first to increase and then to decrease with time post-infection, while the area of each one increased, suggesting the occurrence of fusions. The interaction between NSP2 and a series of NSP5 mutants was investigated using two different assays, a yeast two-hybrid system and an binding/immunoprecipitation assay. Both methods gave comparable results, indicating that the N-terminal region (33 aa) as well as the C-terminal part (aa 131–198) of NSP5 are required for binding to NSP2. When fused to the N and C terminus of EGFP, respectively, these two regions were able to confer the ability to localize in the viroplasm and to form VLSs with NSP2.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19611-0
2004-03-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/3/vir850625.html?itemId=/content/journal/jgv/10.1099/vir.0.19611-0&mimeType=html&fmt=ahah

References

  1. Afrikanova, I., Miozzo, M. C., Giambiagi, S. & Burrone, O. ( 1996; ). Phosphorylation generates different forms of rotavirus NSP5. J Gen Virol 77, 2059–2065.[CrossRef]
    [Google Scholar]
  2. Afrikanova, I., Fabbretti, E., Miozzo, M. C. & Burrone, O. R. ( 1998; ). Rotavirus NSP5 phosphorylation is up-regulated by interaction with NSP2. J Gen Virol 79, 2679–2686.
    [Google Scholar]
  3. Becker, M. M., Peters, T. R. & Dermody, T. S. ( 2003; ). Reovirus σNS and μNS proteins form cytoplasmic inclusion structures in the absence of viral infection. J Virol 77, 5948–5963.[CrossRef]
    [Google Scholar]
  4. Berois, M., Sapin, C., Erk, I., Poncet, D. & Cohen, J. ( 2003; ). Rotavirus nonstructural protein NSP5 interacts with major core protein VP2. J Virol 77, 1757–1763.[CrossRef]
    [Google Scholar]
  5. Blackhall, J., Munoz, M., Fuentes, A. & Magnusson, G. ( 1998; ). Analysis of rotavirus nonstructural protein NSP5 phosphorylation. J Virol 72, 6398–6405.
    [Google Scholar]
  6. Breeden, L. & Nasmyth, K. ( 1985; ). Regulation of the yeast HO gene. Cold Spring Harbor Symp Quant Biol 50, 643–650.[CrossRef]
    [Google Scholar]
  7. Dales, S., Gomatos, P. & Hsu, K. ( 1965; ). The uptake and development of reovirus in strain L cells followed with labelled viral riboznucleic acid and ferritin-antibody complexes. Virology 25, 193–211.[CrossRef]
    [Google Scholar]
  8. Earl, P. L. & Moss, B. ( 1993; ). Generation of recombinant vaccinia viruses. In Current Protocols in Molecular Biology. Edited by F. M. B. Ausubel, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Wiley & Sons.
  9. Eichwald, C., Vascotto, F., Fabbretti, E. & Burrone, O. R. ( 2002; ). Rotavirus NSP5: mapping phosphorylation sites and kinase activation and viroplasm localization domains. J Virol 76, 3461–3470.[CrossRef]
    [Google Scholar]
  10. Estes, M. K., Graham, D. Y., Gerba, C. P. & Smith, E. M. ( 1979; ). Simian rotavirus SA11 replication in cell cultures. J Virol 31, 810–815.
    [Google Scholar]
  11. Fabbretti, E., Afrikanova, I., Vascotto, F. & Burrone, O. R. ( 1999; ). Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo. J Gen Virol 80, 333–339.
    [Google Scholar]
  12. Fillmore, G. C., Lin, H. & Li, J. K. ( 2002; ). Localization of the single-stranded RNA-binding domains of bluetongue virus nonstructural protein NS2. J Virol 76, 499–506.[CrossRef]
    [Google Scholar]
  13. Gallegos, C. O. & Patton, J. T. ( 1989; ). Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Virology 172, 616–627.[CrossRef]
    [Google Scholar]
  14. Gietz, D., St Jean, A., Woods, R. A. & Schiestl, R. H. ( 1992; ). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425.[CrossRef]
    [Google Scholar]
  15. Gillian, A. L. & Nibert, M. L. ( 1998; ). Amino terminus of reovirus nonstructural protein sigma NS is important for ssRNA binding and nucleoprotein complex formation. Virology 240, 1–11.[CrossRef]
    [Google Scholar]
  16. Gillian, A. L., Schmechel, S. C., Livny, J., Schiff, L. A. & Nibert, M. L. ( 2000; ). Reovirus protein σNS binds in multiple copies to single-stranded RNA and shares properties with single-stranded DNA binding proteins. J Virol 74, 5939–5948.[CrossRef]
    [Google Scholar]
  17. Gonzalez, S. A. & Burrone, O. R. ( 1991; ). Rotavirus NS26 is modified by addition of single O-linked residues of N-acetylglucosamine. Virology 182, 8–16.[CrossRef]
    [Google Scholar]
  18. Grimley, P. M., Rosenblum, E. N., Mims, S. J. & Moss, B. ( 1970; ). Interruption by rifampin of an early stage in vaccinia virus morphogenesis: accumulation of membranes which are precursors of virus envelopes. J Virol 6, 519–533.
    [Google Scholar]
  19. Huismans, H. & Joklik, W. K. ( 1976; ). Reovirus-coded polypeptides in infected cells: isolation of two native monomeric polypeptides with affinity for single-stranded and double-stranded RNA, respectively. Virology 70, 411–424.[CrossRef]
    [Google Scholar]
  20. Jayaram, H., Taraporewala, Z., Patton, J. T. & Prasad, B. V. ( 2002; ). Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. Nature 417, 311–315.[CrossRef]
    [Google Scholar]
  21. Kattoura, M. D., Clapp, L. L. & Patton, J. T. ( 1992; ). The rotavirus nonstructural protein, NS35, possesses RNA-binding activity in vitro and in vivo. Virology 191, 698–708.[CrossRef]
    [Google Scholar]
  22. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  23. Mattion, N. M., Mitchell, D. B., Both, G. W. & Estes, M. K. ( 1991; ). Expression of rotavirus proteins encoded by alternative open reading frames of genome segment 11. Virology 181, 295–304.[CrossRef]
    [Google Scholar]
  24. Nagaya, A., Pogo, B. G. & Dales, S. ( 1970; ). Biogenesis of vaccinia: separation of early stages from maturation by means of rifampicin. Virology 40, 1039–1051.[CrossRef]
    [Google Scholar]
  25. Patton, J. T. & Gallegos, C. O. ( 1990; ). Rotavirus RNA replication: single-stranded RNA extends from the replicase particle. J Gen Virol 71, 1087–1094.[CrossRef]
    [Google Scholar]
  26. Patton, J. T., Jones, M. T., Kalbach, A. N., He, Y. W. & Xiaobo, J. ( 1997; ). Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome. J Virol 71, 9618–9626.
    [Google Scholar]
  27. Petrie, B. L., Greenberg, H. B., Graham, D. Y. & Estes, M. K. ( 1984; ). Ultrastructural localization of rotavirus antigens using colloidal gold. Virus Res 1, 133–152.[CrossRef]
    [Google Scholar]
  28. Poncet, D., Lindenbaum, P., L’Haridon, R. & Cohen, J. ( 1997; ). In vivo and in vitro phosphorylation of rotavirus NSP5 correlates with its localization in viroplasms. J Virol 71, 34–41.
    [Google Scholar]
  29. Rhim, J., Jordan, L. & Mayor, H. ( 1962; ). Cytochemical, fluorescent-antibody and electron microscopic studies on the growth of reovirus (ECHO 10) in tissue culture. Virology 17, 342–355.[CrossRef]
    [Google Scholar]
  30. Richardson, M. A. & Furuichi, Y. ( 1985; ). Synthesis in Escherichia coli of the reovirus nonstructural protein sigma NS. J Virol 56, 527–533.
    [Google Scholar]
  31. Sambrook, J., Fristisch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor.
  32. Schuck, P., Taraporewala, Z., McPhie, P. & Patton, J. T. ( 2001; ). Rotavirus nonstructural protein NSP2 self-assembles into octamers that undergo ligand-induced conformational changes. J Biol Chem 276, 9679–9687.[CrossRef]
    [Google Scholar]
  33. Silverstein, S. C. & Schur, P. H. ( 1970; ). Immunofluorescent localization of double-stranded RNA in reovirus-infected cells. Virology 41, 564–566.[CrossRef]
    [Google Scholar]
  34. Taraporewala, Z. F. & Patton, J. T. ( 2001; ). Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. J Virol 75, 4519–4527.[CrossRef]
    [Google Scholar]
  35. Taraporewala, Z. F., Chen, D. & Patton, J. T. ( 2001; ). Multimers of the bluetongue virus nonstructural protein, NS2, possess nucleotidyl phosphatase activity: similarities between NS2 and rotavirus NSP2. Virology 280, 221–231.[CrossRef]
    [Google Scholar]
  36. Taraporewala, Z. F., Schuck, P., Ramig, R. F., Silvestri, L. & Patton, J. T. ( 2002; ). Analysis of a temperature-sensitive mutant rotavirus indicates that NSP2 octamers are the functional form of the protein. J Virol 76, 7082–7093.[CrossRef]
    [Google Scholar]
  37. Torres-Vega, M. A., Gonzalez, R. A., Duarte, M., Poncet, D., Lopez, S. & Arias, C. F. ( 2000; ). The C-terminal domain of rotavirus NSP5 is essential for its multimerization, hyperphosphorylation and interaction with NSP6. J Gen Virol 81, 821–830.
    [Google Scholar]
  38. Vende, P., Taraporewala, Z. F. & Patton, J. T. ( 2002; ). RNA-binding activity of the rotavirus phosphoprotein NSP5 includes affinity for double-stranded RNA. J Virol 76, 5291–5299.[CrossRef]
    [Google Scholar]
  39. Visintin, M., Tse, E., Axelson, H., Rabbitts, T. H. & Cattaneo, A. ( 1999; ). Selection of antibodies for intracellular function using a two-hybrid in vivo system. Proc Natl Acad Sci U S A 96, 11723–11728.[CrossRef]
    [Google Scholar]
  40. Ward, G. A., Stover, C. K., Moss, B. & Fuerst, T. R. ( 1995; ). Stringent chemical and thermal regulation of recombinant gene expression by vaccinia virus vectors in mammalian cells. Proc Natl Acad Sci U S A 92, 6773–6777.[CrossRef]
    [Google Scholar]
  41. Welch, S. K., Crawford, S. E. & Estes, M. K. ( 1989; ). Rotavirus SA11 genome segment 11 protein is a nonstructural phosphoprotein. J Virol 63, 3974–3982.
    [Google Scholar]
  42. Wentz, M. J., Patton, J. T. & Ramig, R. F. ( 1996; ). The 3′-terminal consensus sequence of rotavirus mRNA is the minimal promoter of negative-strand RNA synthesis. J Virol 70, 7833–7841.
    [Google Scholar]
  43. Zeng, C. Q., Estes, M. K., Charpilienne, A. & Cohen, J. ( 1998; ). The N terminus of rotavirus VP2 is necessary for encapsidation of VP1 and VP3. J Virol 72, 201–208.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19611-0
Loading
/content/journal/jgv/10.1099/vir.0.19611-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error