
Full text loading...
Viroplasms are discrete structures formed in the cytoplasm of rotavirus-infected cells and constitute the replication machinery of the virus. The non-structural proteins NSP2 and NSP5 localize in viroplasms together with other viral proteins, including the polymerase VP1, VP3 and the main inner-core protein, VP2. NSP2 and NSP5 interact with each other, activating NSP5 hyperphosphorylation and the formation of viroplasm-like structures (VLSs). We have used NSP2 and NSP5 fused to the enhanced green fluorescent protein (EGFP) to investigate the localization of both proteins within viroplasms in virus-infected cells, as well as the dynamics of viroplasm formation. The number of viroplasms was shown first to increase and then to decrease with time post-infection, while the area of each one increased, suggesting the occurrence of fusions. The interaction between NSP2 and a series of NSP5 mutants was investigated using two different assays, a yeast two-hybrid system and an in vivo binding/immunoprecipitation assay. Both methods gave comparable results, indicating that the N-terminal region (33 aa) as well as the C-terminal part (aa 131–198) of NSP5 are required for binding to NSP2. When fused to the N and C terminus of EGFP, respectively, these two regions were able to confer the ability to localize in the viroplasm and to form VLSs with NSP2.
Article metrics loading...
Full text loading...
References
Data & Media loading...