1887

Abstract

A regulated switch between latent and lytic gene expression is common to all known herpesviruses. However, the effects on host colonization of altering this switch are largely unknown. We deregulated the transcription of the gene encoding the major lytic transactivator of murine gammaherpesvirus-68, ORF50, by inserting a new and powerful promoter element in its 5′ untranslated region. , the mutant virus (M50) transcribed ORF50 at a high level and showed more rapid lytic spread in permissive fibroblast cultures, but , the M50 virus showed a severe deficit in latency establishment, with no sign of the infectious mononucleosis-like illness normally associated with wild-type infection. Although a low level of M50 viral DNA was detectable by PCR in spleens, replication-competent virus could not be recovered beyond 10 days post-infection. The M50 virus was also attenuated in immunocompromised mice. Thus a gammaherpesvirus unable to shut off lytic cycle gene expression showed severely restricted host colonization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19599-0
2004-01-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/1/vir850137.html?itemId=/content/journal/jgv/10.1099/vir.0.19599-0&mimeType=html&fmt=ahah

References

  1. Addison, C. L., Hitt, M., Kunsken, D. & Graham, F. L. ( 1997; ). Comparison of the human versus murine cytomegalovirus immediate early gene promoters for transgene expression by adenoviral vectors. J Gen Virol 78, 1653–1661.
    [Google Scholar]
  2. Adler, H., Messerle, M., Wagner, M. & Koszinowski, U. H. ( 2000; ). Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74, 6964–6974.[CrossRef]
    [Google Scholar]
  3. Adler, H., Messerle, M. & Koszinowski, U. H. ( 2001; ). Virus reconstituted from infectious bacterial artificial chromosome (BAC)-cloned murine gammaherpesvirus 68 acquires wild-type properties in vivo only after excision of BAC vector sequences. J Virol 75, 5692–5696.[CrossRef]
    [Google Scholar]
  4. Ahn, J. W., Powell, K. L., Kellam, P. & Alber, D. G. ( 2002; ). Gammaherpesvirus lytic gene expression as characterized by DNA array. J Virol 76, 6244–6256.[CrossRef]
    [Google Scholar]
  5. Binne, U. K., Amon, W. & Farrell, P. J. ( 2002; ). Promoter sequences required for reactivation of Epstein–Barr virus from latency. J Virol 76, 10282–10289.[CrossRef]
    [Google Scholar]
  6. Blasdell, K., McCracken, C., Morris, A., Nash, A. A., Begon, M., Bennett, M. & Stewart, J. P. ( 2003; ). The wood mouse is a natural host for Murid herpesvirus 4. J Gen Virol 84, 111–113.[CrossRef]
    [Google Scholar]
  7. Blaskovic, D., Stancekova, M., Svobodova, J. & Mistrikova, J. ( 1980; ). Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virol 24, 468.
    [Google Scholar]
  8. Boname, J. M., Coleman, H. M., May, J. S. & Stevenson, P. G. ( 2004; ). Protection against wild-type murine gammaherpesvirus-68 latency by a latency-deficient MHV-68 mutant. J Gen Virol 85, 131–135.[CrossRef]
    [Google Scholar]
  9. Bowden, R. J., Simas, J. P., Davis, A. J. & Efstathiou, S. ( 1997; ). Murine gammaherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. J Gen Virol 78, 1675–1687.
    [Google Scholar]
  10. Bridgeman, A., Stevenson, P. G., Simas, J. P. & Efstathiou, S. ( 2001; ). A secreted chemokine binding protein encoded by murine gammaherpesvirus-68 is necessary for the establishment of a normal latent load. J Exp Med 194, 301–312.[CrossRef]
    [Google Scholar]
  11. Chen, J., Ueda, K., Sakakibara, S., Okuno, T., Parravicini, C., Corbellino, M. & Yamanishi, K. ( 2001; ). Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc Natl Acad Sci U S A 98, 4119–4124.[CrossRef]
    [Google Scholar]
  12. Coleman, H. M., de Lima, B., Morton, V. & Stevenson, P. G. ( 2003; ). Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency. J Virol 77, 2410–2417.[CrossRef]
    [Google Scholar]
  13. Doherty, P. C., Christensen, J. P., Belz, G. T., Stevenson, P. G. & Sangster, M. Y. ( 2001; ). Dissecting the host response to a gamma-herpesvirus. Philos Trans R Soc Lond B Biol Sci 356, 581–593.[CrossRef]
    [Google Scholar]
  14. Dorsch-Hasler, K., Keil, G. M., Weber, F., Jasin, M., Schaffner, W. & Koszinowski, U. H. ( 1985; ). A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc Natl Acad Sci U S A 82, 8325–8329.[CrossRef]
    [Google Scholar]
  15. Dutia, B. M., Allen, D. J., Dyson, H. & Nash, A. A. ( 1999; ). Type I interferons and IRF-1 play a critical role in the control of a gammaherpesvirus infection. Virology 261, 173–179.[CrossRef]
    [Google Scholar]
  16. Efstathiou, S., Ho, Y. M. & Minson, A. C. ( 1990; ). Cloning and molecular characterization of the murine herpesvirus 68 genome. J Gen Virol 71, 1355–1364.[CrossRef]
    [Google Scholar]
  17. Flano, E., Husain, S. M., Sample, J. T., Woodland, D. L. & Blackman, M. A. ( 2000; ). Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages. J Immunol 165, 1074–1081.[CrossRef]
    [Google Scholar]
  18. Flano, E., Kim, I. J., Woodland, D. L. & Blackman, M. A. ( 2002; ). Gamma-herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells. J Exp Med 196, 1363–1372.[CrossRef]
    [Google Scholar]
  19. Gangappa, S., Kapadia, S. B., Speck, S. H. & Virgin, H. W. ( 2002; ). Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. J Virol 76, 11460–11468.[CrossRef]
    [Google Scholar]
  20. Gilbert, M. J., Riddell, S. R., Plachter, B. & Greenberg, P. D. ( 1996; ). Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product. Nature 383, 720–722.[CrossRef]
    [Google Scholar]
  21. Gradoville, L., Gerlach, J., Grogan, E., Shedd, D., Nikiforow, S., Metroka, C. & Miller, G. ( 2000; ). Kaposi's sarcoma-associated herpesvirus open reading frame 50/Rta protein activates the entire viral lytic cycle in the HH-B2 primary effusion lymphoma cell line. J Virol 74, 6207–6212.[CrossRef]
    [Google Scholar]
  22. Jacoby, M. A., Virgin, H. W. & Speck, S. H. ( 2002; ). Disruption of the M2 gene of murine gammaherpesvirus 68 alters splenic latency following intranasal, but not intraperitoneal, inoculation. J Virol 76, 1790–1801.[CrossRef]
    [Google Scholar]
  23. Liu, R., Baillie, J., Sissons, J. G. & Sinclair, J. H. ( 1994; ). The transcription factor YY1 binds to negative regulatory elements in the human cytomegalovirus major immediate early enhancer/promoter and mediates repression in non-permissive cells. Nucleic Acids Res 22, 2453–2459.[CrossRef]
    [Google Scholar]
  24. Liu, S., Pavlova, I. V., Virgin, H. W. & Speck, S. H. ( 2000; ). Characterization of gammaherpesvirus 68 gene 50 transcription. J Virol 74, 2029–2037.[CrossRef]
    [Google Scholar]
  25. Lukac, D. M., Kirshner, J. R. & Ganem, D. ( 1999; ). Transcriptional activation by the product of open reading frame 50 of Kaposi's sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol 73, 9348–9361.
    [Google Scholar]
  26. Marques, S., Efstathiou, S., Smith, K. G., Haury, M. & Simas, J. P. ( 2003; ). Selective gene expression of latent murine gamma herpesvirus 68 in B lymphocytes. J Virol 77, 7308–7318.[CrossRef]
    [Google Scholar]
  27. Simas, J. P. & Efstathiou, S. ( 1998; ). Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trends Microbiol 6, 276–282.[CrossRef]
    [Google Scholar]
  28. Simas, J. P., Bowden, R. J., Paige, V. & Efstathiou, S. ( 1998; ). Four tRNA-like sequences and a serpin homologue encoded by murine gammaherpesvirus 68 are dispensable for lytic replication in vitro and latency in vivo. J Gen Virol 79, 149–153.
    [Google Scholar]
  29. Stevenson, P. G., May, J. S., Smith, X. G., Marques, S., Adler, H., Koszinowski, U. H., Simas, J. P. & Efstathiou, S. ( 2002; ). K3-mediated evasion of CD8(+) T cells aids amplification of a latent gamma-herpesvirus. Nat Immunol 3, 733–740.
    [Google Scholar]
  30. Stewart, J. P., Usherwood, E. J., Ross, A., Dyson, H. & Nash, T. ( 1998; ). Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med 187, 1941–1951.[CrossRef]
    [Google Scholar]
  31. Sun, R., Lin, S. F., Gradoville, L., Yuan, Y., Zhu, F. & Miller, G. ( 1998; ). A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 95, 10866–10871.[CrossRef]
    [Google Scholar]
  32. Sunil-Chandra, N. P., Efstathiou, S. & Nash, A. A. ( 1992a; ). Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J Gen Virol 73, 3275–3279.[CrossRef]
    [Google Scholar]
  33. Sunil-Chandra, N. P., Efstathiou, S., Arno, J. & Nash, A. A. ( 1992b; ). Virological and pathological features of mice infected with murine gammaherpesvirus 68. J Gen Virol 73, 2347–2356.[CrossRef]
    [Google Scholar]
  34. Sunil-Chandra, N. P., Efstathiou, S. & Nash, A. A. ( 1993; ). Interactions of murine gammaherpesvirus 68 with B and T cell lines. Virology 193, 825–833.[CrossRef]
    [Google Scholar]
  35. Usherwood, E. J., Ross, A. J., Allen, D. J. & Nash, A. A. ( 1996; ). Murine gammaherpesvirus-induced splenomegaly: a critical role for CD4 T cells. J Gen Virol 77, 627–630.[CrossRef]
    [Google Scholar]
  36. Virgin, H. W., Latreille, P., Wamsley, P., Hallsworth, K., Weck, K. E., Dal Canto, A. J. & Speck, S. H. ( 1997; ). Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71, 5894–5904.
    [Google Scholar]
  37. Weck, K. E., Kim, S. S., Virgin, H. W. & Speck, S. H. ( 1999; ). Macrophages are the major reservoir of latent murine gammaherpesvirus 68 in peritoneal cells. J Virol 73, 3273–3283.
    [Google Scholar]
  38. Wu, T. T., Usherwood, E. J., Stewart, J. P., Nash, A. A. & Sun, R. ( 2000; ). Rta of murine gammaherpesvirus 68 reactivates the complete lytic cycle from latency. J Virol 74, 3659–3667.[CrossRef]
    [Google Scholar]
  39. Wu, T. T., Tong, L., Rickabaugh, T., Speck, S. & Sun, R. ( 2001; ). Function of Rta is essential for lytic replication of murine gammaherpesvirus 68. J Virol 75, 9262–9273.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19599-0
Loading
/content/journal/jgv/10.1099/vir.0.19599-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error