1887

Abstract

The human cytomegalovirus (HCMV) UL37 immediate-early (IE) gene minimally encodes three protein isoforms that share NH-terminal sequences. The predominant UL37 isoform detected during HCMV infection was the UL37 exon 1 protein (pUL37x1), which was produced from IE and, more abundantly, through late times of infection. pUL37x1 was localized in both the endoplasmic reticulum (ER) and mitochondria in infected cells. To determine which UL37x1 NH-terminal residues serve as ER and mitochondrial targeting signals, we examined the subcellular localization of two deletion mutants. pUL37x1Δ2–23, which lacks the hydrophobic leader, is neither translocated into the ER nor imported mitochondrially; conversely, pUL37x1Δ23–34, lacking the juxtaposed basic residues, was translocated into the ER but only imported weakly into mitochondria. These studies show for the first time the temporal production and localization of pUL37x1 during HCMV infection. The trafficking patterns of mutants suggest that the pUL37x1 targeting signal to ER and mitochondria is bipartite.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19589-0
2004-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/2/vir850323.html?itemId=/content/journal/jgv/10.1099/vir.0.19589-0&mimeType=html&fmt=ahah

References

  1. Adair R., Liebisch G. W., Colberg-Poley A. M. 2003; Complex alternative processing of human cytomegalovirus (HCMV) UL37 pre-mRNA. J Gen Virol 84:3353–3358
    [Google Scholar]
  2. Al-Barazi H. O., Colberg-Poley A. M. 1996; The human cytomegalovirus UL37 immediate-early regulatory protein is an integral membrane N-glycoprotein which traffics through the endoplasmic reticulum and Golgi apparatus. J Virol 70:7198–7208
    [Google Scholar]
  3. Anandatheerthavarada H. K., Biswas G., Mullick J., Sepuri N. B. V., Otvos L., Pain D., Avadhani N. G. 1999; Dual targeting of cytochrome P4502B1 to endoplasmic reticulum and mitochondria involves a novel signal activation by cyclic AMP-dependent phosphorylation at Ser128. EMBO J 18:5494–5504
    [Google Scholar]
  4. Borst E.-M., Hahn G., Koszinowski U. H., Messerle M. 1999; Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli : a new approach for construction of HCMV mutants. J Virol 73:8320–8329
    [Google Scholar]
  5. Chee M. S., Bankier A. T., Beck S. 12 other authors 1990; Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154:125–169
    [Google Scholar]
  6. Colberg-Poley A. M. 1996; Functional roles of immediate early proteins encoded by the human cytomegalovirus UL36–38, UL115–119, TRS1/IRS1 and US3 loci. Intervirology 39:350–360
    [Google Scholar]
  7. Colberg-Poley A. M., Santomenna L. D., Harlow P. P., Benfield P. A., Tenney D. J. 1992; Human cytomegalovirus US3 and UL36–38 immediate early proteins regulate gene expression. J Virol 66:95–105
    [Google Scholar]
  8. Colberg-Poley A. M., Huang L., Soltero V. E., Iskenderian A. C., Schumacher R.-F., Anders D. G. 1998; The acidic domain of pUL37x1 and gpUL37 plays a key role in transactivation of HCMV DNA replication gene promoter constructions. Virology 246:400–408
    [Google Scholar]
  9. Colberg-Poley A. M., Patel M. B., Erezo D. P. P., Slater J. E. 2000; Human cytomegalovirus immediate-early regulatory proteins traffic through the secretory apparatus and to mitochondria. J Gen Virol 81:1779–1789
    [Google Scholar]
  10. Davison A. J., Dolan A., Akter P., Addison C., Dargan D. J., Alcendor D. J., McGeoch D. J., Hayward G. S. 2003; The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84:17–28
    [Google Scholar]
  11. Fish K. N., Soderberg-Naucler C., Nelson J. A. 1998; Steady-state plasma membrane expression of human cytomegalovirus gB is determined by the phosphorylation state of Ser900 . J Virol 72:6657–6664
    [Google Scholar]
  12. Goldmacher V. S., Bartle L. M., Skaletskaya A. 10 other authors 1999; A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to bcl-2. Proc Natl Acad Sci U S A 96:12536–12541
    [Google Scholar]
  13. Hayajneh W. A., Colberg-Poley A. M., Skaletskaya A., Bartle L. M., Lesperance M. M., Contopoulos-Ioannidis D. G., Kedersha N. L., Goldmacher V. S. 2001a; The sequence and antiapoptotic functional domains of the human cytomegalovirus UL37 exon 1 immediate early protein are conserved in multiple primary strains. Virology 279:233–240
    [Google Scholar]
  14. Hayajneh W. A., Contopoulos-Ioannidis D. G., Lesperance M. M., Venegas A. M., Colberg-Poley A. M. 2001b; The carboxyl terminus of the human cytomegalovirus UL37 immediate-early glycoprotein is conserved in primary strains and is important for transactivation. J Gen Virol 82:1569–1579
    [Google Scholar]
  15. Johnson A. E., van Waes M. A. 1999; The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol 15:799–842
    [Google Scholar]
  16. Kanaji S., Iwahashi J., Kida Y., Sakaguchi M., Mihara K. 2000; Characterization of the signal that directs Tom20 to the mitochondrial outer membrane. J Cell Biol 151:277–288
    [Google Scholar]
  17. Kouzarides T., Bankier A. T., Satchwell S. C., Preddy E., Barrell B. G. 1988; An immediate early gene of human cytomegalovirus encodes a potential membrane glycoprotein. Virology 165:151–164
    [Google Scholar]
  18. Krajewski S., Tanaka S., Takayama S., Schibler M. J., Fenton W., Reed J. C. 1993; Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53:4701–4714
    [Google Scholar]
  19. Kuroda R., Ikenoue T., Honsho M., Tsujimoto S., Mitoma J.-Y., Ito A. 1998; Charged amino acids at the carboxyl-terminal portions determine the intracellular locations of two isoforms of cytochrome b5 . J Biol Chem 273:31097–31102
    [Google Scholar]
  20. Lee M., Xiao J., Haghjoo E., Zhan X., Abenes G., Tuong T., Dunn W., Liu F. 2000; Murine cytomegalovirus containing a mutation at open reading frame M37 is severely attenuated in growth and virulence in vivo. J Virol 74:11099–11107
    [Google Scholar]
  21. McCormick A. L., Smith V. L., Chow D., Mocarski E. S. 2003; Disruption of mitochondrial networks by the human cytomegalovirus UL37 gene product viral mitochondrion-localized inhibitor of apoptosis. J Virol 77:631–641
    [Google Scholar]
  22. Ni L., Heard T. S., Weiner H. 1999; In vivo mitochondrial import. A comparison of leader sequence charge and structural relationships with the in vivo model resulting in evidence for co-translational import. J Biol Chem 274:12685–12691
    [Google Scholar]
  23. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6
    [Google Scholar]
  24. Patterson C. E., Shenk T. 1999; Human cytomegalovirus UL36 protein is dispensable for viral replication in cultured cells. J Virol 73:7126–7131
    [Google Scholar]
  25. Paulik M., Nowack D. D., Morre D. J. 1988; Isolation of a vesicular intermediate in the cell-free transfer of membrane from transitional elements of the endoplasmic reticulum to Golgi apparatus cisternae of rat liver. J Biol Chem 263:17738–17748
    [Google Scholar]
  26. Rapaport D. 2002; Biogenesis of the mitochondrial TOM complex. Trends Biochem Sci 27:191–197
    [Google Scholar]
  27. Skaletskaya A., Bartle L. M., Chittenden T., McCormick A. L., Mocarski E. S., Goldmacher V. S. 2001; A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci U S A 98:7829–7834
    [Google Scholar]
  28. Smith J. A., Pari G. S. 1995; Expression of human cytomegalovirus UL36 and UL37 genes is required for viral DNA replication. J Virol 69:1925–1931
    [Google Scholar]
  29. Su Y., Testaverde J. R., Davis C. N., Hayajneh W. A., Adair R., Colberg-Poley A. M. 2003a; Human cytomegalovirus UL37 immediate early target minigene RNAs are accurately spliced and polyadenylated. J Gen Virol 84:29–39
    [Google Scholar]
  30. Su Y., Adair R., Davis C. N., DiFronzo N. L., Colberg-Poley A. M. 2003b; Convergence of RNA cis elements and cellular polyadenylation factors in the regulation of human cytomegalovirus UL37 exon 1 unspliced RNA production. J Virol 77:12729–12741
    [Google Scholar]
  31. Tenney D. J., Colberg-Poley A. M. 1991a; Expression of the human cytomegalovirus UL36–38 immediate early region during permissive infection. Virology 182:199–210
    [Google Scholar]
  32. Tenney D. J., Colberg-Poley A. M. 1991b; Human cytomegalovirus UL36–38 and US3 immediate-early genes: temporally regulated expression of nuclear, cytoplasmic, and polysome-associated transcripts during infection. J Virol 65:6724–6734
    [Google Scholar]
  33. von Heijne G. 1986; Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5:1335–1342
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19589-0
Loading
/content/journal/jgv/10.1099/vir.0.19589-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error