1887

Abstract

The human immunodeficiency virus type 1 p6 region encodes p6 and the transframe p6 protein. The Gag frame encodes an N-terminal late assembly L domain and a C-terminal Vpr binding domain. In the Pol frame, substitution at a C-terminal motif decreases protease autocleavage. The role of the highly polymorphic central region of p6, comprising amino acids S14–I31 (p6) and R20–D39 (p6), is unclear. Analysis of this central region demonstrated that 35 % of p6 appears to be dispensable for virus propagation and smaller deletion and insertion polymorphisms can be tolerated . Extensive Pol deletion (ΔR20–D39, 42 % of p6) did not alter protease autocleavage.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19576-0
2004-04-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/4/vir850921.html?itemId=/content/journal/jgv/10.1099/vir.0.19576-0&mimeType=html&fmt=ahah

References

  1. Bleiber, G., Munoz, M., Ciuffi, A., Meylan, P. & Telenti, A. ( 2001; ). Individual contribution of protease and reverse transcriptase to infectivity, replication and protein maturation of antiretroviral drug resistant human immunodeficiency virus type 1. J Virol 75, 3291–3300.[CrossRef]
    [Google Scholar]
  2. Chen, C., Li, F. & Montelaro, R. C. ( 2001; ). Functional roles of equine infectious anemia virus Gag p9 in viral budding and infection. J Virol 75, 9762–9770.[CrossRef]
    [Google Scholar]
  3. Demirov, D. G., Orenstein, J. M. & Freed, E. O. ( 2002; ). The late domain of human immunodeficiency virus type 1 p6 promotes virus release in a cell type-dependent manner. J Virol 76, 105–117.[CrossRef]
    [Google Scholar]
  4. Dettenhofer, M. & Yu, X. F. ( 1999; ). Proline residues in human immunodeficiency virus type 1 p6Gag exert a cell type-dependent effect on viral replication and virion incorporation of Pol proteins. J Virol 73, 4696–4704.
    [Google Scholar]
  5. Garnier, L., Ratner, L., Rovinski, B., Cao, S.-X. & Wills, J. W. ( 1998; ). Particle size determinants in the human immunodeficiency virus type 1 Gag protein. J Virol 72, 4667–4677.
    [Google Scholar]
  6. Garrus, J. E., von Schwedler, U. K., Pornillos, O. W. & 9 other authors ( 2001; ). Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65.[CrossRef]
    [Google Scholar]
  7. Göttlinger, H. G., Dorfman, T., Sodroski, J. G. & Haseltine, W. A. ( 1991; ). Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci U S A 88, 3195–3199.[CrossRef]
    [Google Scholar]
  8. Hou, D., Cenciarelli, C., Jensen, J. P., Nguygen, H. B. & Weissman, A. M. ( 1994; ). Activation-dependent ubiquitination of a T cell antigen receptor subunit on multiple intracellular lysines. J Biol Chem 269, 14244–14247.
    [Google Scholar]
  9. Huang, M., Orenstein, J. M., Martin, M. A. & Freed, E. O. ( 1995; ). p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J Virol 69, 6810–6818.
    [Google Scholar]
  10. Kondo, E. & Göttlinger, H. G. ( 1996; ). A conserved LXXLF sequence is the major determinant in p6 gag required for the incorporation of human immunodeficiency virus type 1 Vpr. J Virol 70, 159–164.
    [Google Scholar]
  11. Louis, J. M., Clore, G. M. & Gronenborn, A. M. ( 1999; ). Autoprocessing of HIV-1 protease is tightly coupled to protein folding. Nat Struct Biol 6, 868–875.[CrossRef]
    [Google Scholar]
  12. Lu, Y. L., Bennett, R. P., Wills, J. W., Gorelick, R. & Ratner, L. ( 1995; ). A leucine triplet repeat sequence (LXX)4 in p6 gag is important for Vpr incorporation into human immunodeficiency virus type 1 particles. J Virol 69, 6873–6879.
    [Google Scholar]
  13. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. ( 2001; ). HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med 7, 1313–1319.[CrossRef]
    [Google Scholar]
  14. Muller, B., Patschinsky, T. & Krausslich, H. G. ( 2002; ). The late-domain-containing protein p6 is the predominant phosphoprotein of human immunodeficiency virus type 1 particles. J Virol 76, 1015–1024.[CrossRef]
    [Google Scholar]
  15. Ott, D. E., Coren, L. V., Copeland, T. D. & 7 other authors ( 1998; ). Uquitin is covalently attached to the p6Gag proteins of human immunodeficiency virus type 1 and simian immunodeficiency virus and to the p12Gag protein of Moloney murine leukemia virus. J Virol 72, 2962–2968.
    [Google Scholar]
  16. Ott, D. E., Chertova, E. N., Busch, L. K., Gagliardi, T. D. & Johnson, D. G. ( 1999; ). Mutational analysis of the hydrophobic tail of the human immunodeficiency virus type 1 p6Gag protein produces a mutant that fails to package its envelope protein. J Virol 73, 19–28.
    [Google Scholar]
  17. Ott, D. E., Coren, L. V., Chertova, E. N., Gagliardi, T. D. & Schubert, U. ( 2000; ). Ubiquitination of HIV-1 and MuLV Gag. Virology 278, 111–121.[CrossRef]
    [Google Scholar]
  18. Partin, K., Zybarth, G., Ehrlich, L., DeCrombrugghe, M., Wimmer, E. & Carter, C. ( 1991; ). Deletion of sequences upstream of the proteinase improves the proteolytic processing of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 88, 4776–4780.[CrossRef]
    [Google Scholar]
  19. Paulus, C., Hellebrand, S., Tessmer, U., Wolf, H., Kräusslich, H.-G. & Wagner, R. ( 1999; ). Competitive inhibition of human immunodeficiency virus type-1 protease by the Gag–Pol transframe protein. J Biol Chem 274, 21539–21543.[CrossRef]
    [Google Scholar]
  20. Peters, S., Munoz, M., Yerly, S. & 8 other authors ( 2001; ). Resistance to nucleoside analog reverse transcriptase inhibitors mediated by human immunodeficiency virus type 1 p6 protein. J Virol 75, 9644–9653.[CrossRef]
    [Google Scholar]
  21. Schubert, U., Ott, D. E., Chertova, E. N., Welker, R., Tessmer, U., Princiotta, M. F., Bennink, J. R., Krausslich, H. G. & Yewdell, J. W. ( 2000; ). Proteasome inhibition interferes with Gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc Natl Acad Sci U S A 97, 13057–13062.[CrossRef]
    [Google Scholar]
  22. VerPlank, L., Bouamr, F., LaGrassa, T. J., Agresta, B., Kikonyogo, A., Leis, J. & Carter, C. A. ( 2001; ). Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag. Proc Natl Acad Sci U S A 98, 7724–7729.[CrossRef]
    [Google Scholar]
  23. Vogt, V. M. ( 2000; ). Ubiquitin in retrovirus assembly: actor or bystander? Proc Natl Acad Sci U S A 97, 12945–12947.[CrossRef]
    [Google Scholar]
  24. Yu, X.-F., Matsuda, Z., Yu, Q.-C., Lee, T.-H. & Essex, M. ( 1995; ). Role of the C terminus Gag protein in human immunodeficiency virus type 1 virion assembly and maturation. J Gen Virol 76, 3171–3179.[CrossRef]
    [Google Scholar]
  25. Yu, X.-F., Dawson, L., Tian, C.-J., Flexner, C. & Dettenhofer, M. ( 1998; ). Mutations of the human immunodeficiency virus type 1 p6Gag domain results in reduced retention of Pol proteins during virus assembly. J Virol 72, 3412–3417.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19576-0
Loading
/content/journal/jgv/10.1099/vir.0.19576-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error