1887

Abstract

The 266 kbp genome sequence of plaque-purified, tissue culture-adapted, attenuated European FP9 has been determined and compared with the 288 kbp sequence of a pathogenic US strain (FPVUS). FP9 carries 244 of the 260 reported FPVUS ORFs (both viruses also have an unreported orthologue of conserved poxvirus gene A14.5L). Relative to FPVUS, FP9 differed by 118 mutations (26 deletions, 15 insertions and 77 base substitutions), affecting FP9 equivalents of 71 FPVUS ORFs. To help to identify mutations involved in adaptation and attenuation, the virulent parent of FP9, HP1, was sequenced at positions where FP9 differed from FPVUS. At 68 positions, FP9 and HP1 sequences were identical, reflecting differences between American and European lineages. Mutations at the remaining 50 positions in FP9 relative to FPVUS and HP1, involving 46 ORFs, therefore accounted for adaptation and attenuation. ORFs deleted during passage included those encoding members of multigene families: 12 ankyrin repeat proteins, three C-type lectin-like proteins, two C4L/C10L-like proteins, one G-protein coupled receptor protein, one V-type Ig domain protein, two N1R/p28 proteins and one EFc family protein. Tandem ORFs encoding B22R orthologues were fused by a 5·8 kbp deletion. Single-copy genes disrupted or deleted during passage included those encoding a homologue of murine T10, a conserved DNA/pantothenate metabolism flavoprotein, photolyase, the A-type inclusion protein and an orthologue of vaccinia A47L. Gene assignments have been updated for DNase II/DLAD, binding proteins for IL-18 and interferon-, phospholipid hydroperoxide glutathione peroxidase (PHGPX/GPX-4) and for a highly conserved homologue of ELOVL4.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19568-0
2004-02-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/2/vir850305.html?itemId=/content/journal/jgv/10.1099/vir.0.19568-0&mimeType=html&fmt=ahah

References

  1. Afonso, C. L., Tulman, E. R., Lu, Z., Zsak, L., Kutish, G. F. & Rock, D. L. ( 2000; ). The genome of fowlpox virus. J Virol 74, 3815–3831.[CrossRef]
    [Google Scholar]
  2. Afonso, C. L., Tulman, E. R., Lu, Z., Zsak, L., Rock, D. L. & Kutish, G. F. ( 2001; ). The genome of turkey herpesvirus. J Virol 75, 971–978.[CrossRef]
    [Google Scholar]
  3. Aguado, B., Selmes, I. P. & Smith, G. L. ( 1992; ). Nucleotide sequence of 21·8 kbp of variola major virus strain Harvey and comparison with vaccinia virus. J Gen Virol 73, 2887–2902.[CrossRef]
    [Google Scholar]
  4. Alcami, A. & Smith, G. L. ( 1992; ). A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71, 153–167.[CrossRef]
    [Google Scholar]
  5. Ali, S. A., McLean, C. S., Boursnell, M. E. & 10 other authors ( 2000; ). Preclinical evaluation of “whole” cell vaccines for prophylaxis and therapy using a disabled infectious single cycle-herpes simplex virus vector to transduce cytokine genes. Cancer Res 60, 1663–1670.
    [Google Scholar]
  6. Antoine, G., Scheiflinger, F., Dorner, F. & Falkner, F. G. ( 1998; ). The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244, 365–396.[CrossRef]
    [Google Scholar]
  7. Bayliss, C. D., Peters, R. W., Cook, J. K., Reece, R. L., Howes, K., Binns, M. M. & Boursnell, M. E. ( 1991; ). A recombinant fowlpox virus that expresses the VP2 antigen of infectious bursal disease virus induces protection against mortality caused by the virus. Arch Virol 120, 193–205.[CrossRef]
    [Google Scholar]
  8. Betakova, T., Wolffe, E. J. & Moss, B. ( 2000; ). The vaccinia virus A14·5L gene encodes a hydrophobic 53-amino-acid virion membrane protein that enhances virulence in mice and is conserved among vertebrate poxviruses. J Virol 74, 4085–4092.[CrossRef]
    [Google Scholar]
  9. Binns, M. M., Britton, B. S., Mason, C. & Boursnell, M. E. G. ( 1990; ). Analysis of the fowlpox virus genome region corresponding to the vaccinia virus D6 to A1 region: location of, and variation in, non-essential genes in poxviruses. J Gen Virol 71, 2873–2881.[CrossRef]
    [Google Scholar]
  10. Binns, M. M., Boursnell, M. E. & Skinner, M. A. ( 1992; ). Gene translocations in poxviruses: the fowlpox virus thymidine kinase gene is flanked by 15 bp direct repeats and occupies the locus which in vaccinia virus is occupied by the ribonucleotide reductase large subunit gene. Virus Res 24, 161–172.[CrossRef]
    [Google Scholar]
  11. Bonfield, J. K., Smith, K. & Staden, R. ( 1995; ). A new DNA sequence assembly program. Nucleic Acids Res 23, 4992–4999.[CrossRef]
    [Google Scholar]
  12. Boulanger, D., Green, P., Smith, T., Czerny, C. P. & Skinner, M. A. ( 1998; ). The 131-amino-acid repeat region of the essential 39-kilodalton core protein of fowlpox virus FP9, equivalent to vaccinia virus A4L protein, is nonessential and highly immunogenic. J Virol 72, 170–179.
    [Google Scholar]
  13. Boulanger, D., Smith, T. & Skinner, M. A. ( 2000; ). Morphogenesis and release of fowlpox virus. J Gen Virol 81, 675–687.
    [Google Scholar]
  14. Boulanger, D., Green, P., Jones, B., Henriquet, G., Hunt, L. G., Laidlaw, S. M., Monaghan, P. & Skinner, M. A. ( 2002; ). Identification and characterization of three immunodominant structural proteins of fowlpox virus. J Virol 76, 9844–9855.[CrossRef]
    [Google Scholar]
  15. Boursnell, M. E., Green, P. F., Samson, A. C., Campbell, J. I., Deuter, A., Peters, R. W., Millar, N. S., Emmerson, P. T. & Binns, M. M. ( 1990a; ). A recombinant fowlpox virus expressing the hemagglutinin-neuraminidase gene of Newcastle disease virus (NDV) protects chickens against challenge by NDV. Virology 178, 297–300.[CrossRef]
    [Google Scholar]
  16. Boursnell, M. E., Green, P. F., Campbell, J. I. & 7 other authors ( 1990b; ). Insertion of the fusion gene from Newcastle disease virus into a non-essential region in the terminal repeats of fowlpox virus and demonstration of protective immunity induced by the recombinant. J Gen Virol 71, 621–628.[CrossRef]
    [Google Scholar]
  17. Brigelius-Flohe, R., Aumann, K. D., Blocker, H. & 9 other authors (1994; ). Phospholipid-hydroperoxide glutathione peroxidase. Genomic DNA, cDNA, and deduced amino acid sequence. J Biol Chem 269, 7342–7348.
    [Google Scholar]
  18. Brigelius-Flohe, R., Friedrichs, B., Maurer, S., Schultz, M. & Streicher, R. ( 1997; ). Interleukin-1-induced nuclear factor kappa B activation is inhibited by overexpression of phospholipid hydroperoxide glutathione peroxidase in a human endothelial cell line. Biochem J 328, 199–203.
    [Google Scholar]
  19. Britton, P., Green, P., Kottier, S., Mawditt, K. L., Penzes, Z., Cavanagh, D. & Skinner, M. A. ( 1996; ). Expression of bacteriophage T7 RNA polymerase in avian and mammalian cells by a recombinant fowlpox virus. J Gen Virol 77, 963–967.[CrossRef]
    [Google Scholar]
  20. Brunetti, C. R., Amano, H., Ueda, Y., Qin, J., Miyamura, T., Suzuki, T., Li, X., Barrett, J. W. & McFadden, G. ( 2003; ). Complete genomic sequence and comparative analysis of the tumorigenic poxvirus Yaba monkey tumor virus. J Virol 77, 13335–13347.[CrossRef]
    [Google Scholar]
  21. Campbell, J. I. A., Binns, M. M., Tomley, F. M. & Boursnell, M. E. G. ( 1989; ). Tandem repeated sequences within the terminal region of the fowlpox virus genome. J Gen Virol 70, 145–154.[CrossRef]
    [Google Scholar]
  22. Garcia, M., Narang, N., Reed, W. M. & Fadly, A. M. ( 2003; ). Molecular characterization of reticuloendotheliosis virus insertions in the genome of field and vaccine strains of fowl poxvirus. Avian Dis 47, 343–354.[CrossRef]
    [Google Scholar]
  23. Gomi, Y., Sunamachi, H., Mori, Y., Nagaike, K., Takahashi, M. & Yamanishi, K. ( 2002; ). Comparison of the complete DNA sequences of the Oka varicella vaccine and its parental virus. J Virol 76, 11447–11459.[CrossRef]
    [Google Scholar]
  24. Halford, S., Wilson, D. I., Daw, S. C. & other authors ( 1993; ). Isolation of a gene expressed during early embryogenesis from the region of 22q11 commonly deleted in DiGeorge syndrome. Hum Mol Genet 2, 1577–1582.[CrossRef]
    [Google Scholar]
  25. Hertig, C., Coupar, B. E., Gould, A. R. & Boyle, D. B. ( 1997; ). Field and vaccine strains of fowlpox virus carry integrated sequences from the avian retrovirus, reticuloendotheliosis virus. Virology 235, 367–376.[CrossRef]
    [Google Scholar]
  26. Izumiya, Y., Jang, H. K., Ono, M. & Mikami, T. ( 2001; ). A complete genomic DNA sequence of Marek's disease virus type 2, strain HPRS24. Curr Top Microbiol Immunol 255, 191–221.
    [Google Scholar]
  27. Kim, T. J. & Tripathy, D. N. ( 2001; ). Reticuloendotheliosis virus integration in the fowl poxvirus genome: not a recent event. Avian Dis 45, 663–669.[CrossRef]
    [Google Scholar]
  28. Kit, S. ( 1990; ). Genetically engineered vaccines for control of Aujeszky's disease (pseudorabies). Vaccine 8, 420–424.[CrossRef]
    [Google Scholar]
  29. Kozak, M. ( 2002; ). Pushing the limits of the scanning mechanism for initiation of translation. Gene 299, 1–34.[CrossRef]
    [Google Scholar]
  30. Laidlaw, S. M., Anwar, M. A., Thomas, W., Green, P., Shaw, K. & Skinner, M. A. ( 1998; ). Fowlpox virus encodes nonessential homologs of cellular alpha-SNAP, PC- 1, and an orphan human homolog of a secreted nematode protein. J Virol 72, 6742–6751.
    [Google Scholar]
  31. Lee, L. F., Wu, P., Sui, D., Ren, D., Kamil, J., Kung, H. J. & Witter, R. L. ( 2000; ). The complete unique long sequence and the overall genomic organization of the GA strain of Marek's disease virus. Proc Natl Acad Sci U S A 97, 6091–6096.[CrossRef]
    [Google Scholar]
  32. MacLea, K. S., Krieser, R. J. & Eastman, A. ( 2003; ). A family history of deoxyribonuclease II: surprises from Trichinella spiralis and Burkholderia pseudomallei. Gene 305, 1–12.[CrossRef]
    [Google Scholar]
  33. Massung, R. F., Liu, L. I., Qi, J., Knight, J. C., Yuran, T. E., Kerlavage, A. R., Parsons, J. M., Venter, J. C. & Esposito, J. J. ( 1994; ). Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology 201, 215–240.[CrossRef]
    [Google Scholar]
  34. Mayr, A. ( 1960; ). Verhalten von Hühner-, Tauben- und Kanarienpockenviren im Küken nach intravenöser Impfung. Zentbl Bakteriol Parasitenkd Infektkrankh Hyg. 179, 149–159 (in German).
    [Google Scholar]
  35. Mayr, A. & Malicki, K. ( 1966; ). Attenuierung von virulentem Hühnerpockenvirus in Zellkulturen und Eigenschaften des attenuierten Virus. Zentbl Vetmed Reihe B 13, 1–13 (in German).
    [Google Scholar]
  36. Mayr, A., Stickl, H., Muller, H. K., Danner, K. & Singer, H. ( 1978; ). [The smallpox vaccination strain MVA: marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism (author's transl.)]. Zentbl Bakteriol B 167, 375–390.
    [Google Scholar]
  37. Merchlinsky, M. & Moss, B. ( 1989; ). Nucleotide sequence required for resolution of the concatemer junction of vaccinia virus DNA. J Virol 63, 4354–4361.
    [Google Scholar]
  38. Mettenleiter, T. C., Klupp, B. G., Weiland, F. & Visser, N. ( 1994; ). Characterization of a quadruple glycoprotein-deleted pseudorabies virus mutant for use as a biologically safe live virus vaccine. J Gen Virol 75, 1723–1733.[CrossRef]
    [Google Scholar]
  39. Miskin, J. E., Abrams, C. C., Goatley, L. C. & Dixon, L. K. ( 1998; ). A viral mechanism for inhibition of the cellular phosphatase calcineurin. Science 281, 562–565.[CrossRef]
    [Google Scholar]
  40. Mockett, B., Binns, M. M., Boursnell, M. E. G. & Skinner, M. A. ( 1992; ). Comparison of the locations of homologous fowlpox and vaccinia virus genes reveals major genome reorganization. J Gen Virol 73, 2661–2668.[CrossRef]
    [Google Scholar]
  41. Moore, K. M., Davis, J. R., Sato, T. & Yasuda, A. ( 2000; ). Reticuloendotheliosis virus (REV) long terminal repeats incorporated in the genomes of commercial fowl poxvirus vaccines and pigeon poxviruses without indication of the presence of infectious REV. Avian Dis 44, 827–841.[CrossRef]
    [Google Scholar]
  42. Mosavi, L. K., Minor, D. L., Jr & Peng, Z. Y. ( 2002; ). Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci U S A 99, 16029–16034.[CrossRef]
    [Google Scholar]
  43. Neilan, J. G., Zsak, L., Lu, Z., Kutish, G. F., Afonso, C. L. & Rock, D. L. ( 2002; ). Novel swine virulence determinant in the left variable region of the African swine fever virus genome. J Virol 76, 3095–3104.[CrossRef]
    [Google Scholar]
  44. Nomura, K., Imai, H., Koumura, T., Kobayashi, T. & Nakagawa, Y. ( 2000; ). Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 351, 183–193.[CrossRef]
    [Google Scholar]
  45. Novick, D., Kim, S. H., Fantuzzi, G., Reznikov, L. L., Dinarello, C. A. & Rubinstein, M. ( 1999; ). Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 10, 127–136.[CrossRef]
    [Google Scholar]
  46. Perkus, M. E., Goebel, S. J., Davis, S. W., Johnson, G. P., Limbach, K., Norton, E. K. & Paoletti, E. ( 1990; ). Vaccinia virus host range genes. Virology 179, 276–286.[CrossRef]
    [Google Scholar]
  47. Powell, P. P., Dixon, L. K. & Parkhouse, R. M. ( 1996; ). An IkappaB homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages. J Virol 70, 8527–8533.
    [Google Scholar]
  48. Puehler, F., Schwarz, H., Waidner, B., Kalinowski, J., Kaspers, B., Bereswill, S. & Staeheli, P. ( 2003; ). An interferon-gamma-binding protein of novel structure encoded by the fowlpox virus. J Biol Chem 278, 6905–6911.[CrossRef]
    [Google Scholar]
  49. Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M. A. & Barrell, B. ( 2000; ). Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945.[CrossRef]
    [Google Scholar]
  50. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  51. Singh, P., Schnitzlein, W. M. & Tripathy, D. N. ( 2003; ). Reticuloendotheliosis virus sequences within the genomes of field strains of fowlpox virus display variability. J Virol 77, 5855–5862.[CrossRef]
    [Google Scholar]
  52. Skinner, M. A. & Laidlaw, S. M. ( 1999; ). Investigation of DNA virus genome structure. In DNA Viruses – A Practical Approach, pp. 15–46. Edited by A. J. Cann. Oxford: Oxford University Press.
  53. Smith, V. P., Bryant, N. A. & Alcami, A. ( 2000; ). Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18- binding proteins. J Gen Virol 81, 1223–1230.
    [Google Scholar]
  54. Sonnhammer, E. L. & Durbin, R. ( 1994; ). A workbench for large-scale sequence homology analysis. Comput Appl Biosci 10, 301–307.
    [Google Scholar]
  55. Symons, J. A., Alcami, A. & Smith, G. L. ( 1995; ). Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81, 551–560.[CrossRef]
    [Google Scholar]
  56. Tadese, T. & Reed, W. M. ( 2003; ). Detection of specific reticuloendotheliosis virus sequence and protein from REV-integrated fowlpox virus strains. J Virol Methods 110, 99–104.[CrossRef]
    [Google Scholar]
  57. Tartaglia, J., Perkus, M. E., Taylor, J. & 9 other authors ( 1992; ). NYVAC: a highly attenuated strain of vaccinia virus. Virology 188, 217–232.[CrossRef]
    [Google Scholar]
  58. Tulman, E. R., Afonso, C. L., Lu, Z., Zsak, L., Rock, D. L. & Kutish, G. F. ( 2000; ). The genome of a very virulent Marek's disease virus. J Virol 74, 7980–7988.[CrossRef]
    [Google Scholar]
  59. Tulman, E. R., Afonso, C. L., Lu, Z. & 7 other authors ( 2002; ). The genomes of sheeppox and goatpox viruses. J Virol 76, 6054–6061.[CrossRef]
    [Google Scholar]
  60. Xiang, Y. & Moss, B. ( 1999a; ). IL-18 binding and inhibition of interferon gamma induction by human poxvirus-encoded proteins. Proc Natl Acad Sci U S A 96, 11537–11542.[CrossRef]
    [Google Scholar]
  61. Xiang, Y. & Moss, B. ( 1999b; ). Identification of human and mouse homologs of the MC51L-53L-54L family of secreted glycoproteins encoded by the Molluscum contagiosum poxvirus. Virology 257, 297–302.[CrossRef]
    [Google Scholar]
  62. Xiang, Y. & Moss, B. ( 2001a; ). Correspondence of the functional epitopes of poxvirus and human interleukin-18-binding proteins. J Virol 75, 9947–9954.[CrossRef]
    [Google Scholar]
  63. Xiang, Y. & Moss, B. ( 2001b; ). Determination of the functional epitopes of human interleukin-18-binding protein by site-directed mutagenesis. J Biol Chem 276, 17380–17386.[CrossRef]
    [Google Scholar]
  64. Zhang, K., Kniazeva, M., Han, M. & 17 other authors ( 2001; ). A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet 27, 89–93.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19568-0
Loading
/content/journal/jgv/10.1099/vir.0.19568-0
Loading

Data & Media loading...

Supplements

Summary of single-base mutations observed in FP9 relative to FPVUS [PDF](138 KB)

PDF

FP9 deletion 2 in the inverted terminal repeats (ITRs). Only the left ITR is illustrated. Comparison of FP9 (top) and FPVUS (bottom), drawn to scale (as illustrated by scale bar). A solid, black, horizontal line indicates unfeatured genomic sequence. Cross-hatched boxes represent the repeat region in each virus. Blue and green boxes illustrate ORFs 001 and 002, respectively. Those raised above the sequence line are transcribed from left to right, those below the sequence line are transcribed from right to left. Dashed red lines indicate sequence deleted or otherwise absent from either virus, relative to the other. Vertical dotted tramlines illustrate the 18 bp penetration of deletion 2 into the repeat region.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error