1887

Abstract

Epstein–Barr virus nuclear antigen (EBNA)-6 is essential for EBV-induced immortalization of primary human B-lymphocytes . Previous studies have shown that EBNA-6 acts as a transcriptional regulator of viral and cellular genes; however at present, few functional domains of the 140 kDa EBNA-6 protein have been completely characterized. There are five computer-predicted nuclear localization signals (NLS), four monopartite and one bipartite, present in the EBNA-6 amino acid sequence. To identify which of these NLS are functional, fusion proteins between green fluorescent protein and deletion constructs of EBNA-6 were expressed in HeLa cells. Each of the constructs containing at least one of the NLS was targeted to the nucleus of cells whereas a construct lacking all of the NLS was cytoplasmic. Site-directed mutation of these NLS demonstrated that only three of the NLS were functional, one at the N-terminal end (aa 72–80), one in the middle (aa 412–418) and one at the C-terminal end (aa 939–945) of the EBNA-6 protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19549-0
2004-01-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/1/vir850165.html?itemId=/content/journal/jgv/10.1099/vir.0.19549-0&mimeType=html&fmt=ahah

References

  1. Adldinger H. K., Delius H., Freese U. K., Clarke J., Bornkamm G. W. 1985; A putative transforming gene of Jijoye virus differs from that of Epstein–Barr virus prototypes. Virology 141:221–234
    [Google Scholar]
  2. Allday M. J., Crawford D. H., Thomas J. A. 1993; Epstein–Barr virus (EBV) nuclear antigen 6 induces expression of the EBV latent membrane protein and an activated phenotype in Raji cells. J Gen Virol 74:361–369
    [Google Scholar]
  3. Ambinder R. F., Mullen M. A., Chang Y. N., Hayward G. S., Hayward S. D. 1991; Functional domains of Epstein–Barr virus nuclear antigen EBNA-1. J Virol 65:1466–1478
    [Google Scholar]
  4. Bain M., Watson R. J., Farrell P. J., Allday M. J. 1996; Epstein–Barr virus nuclear antigen 3c is a powerful repressor of transcription when tethered to DNA. J Virol 70:2481–2489
    [Google Scholar]
  5. Chaudhary N., Courvalin J. C. 1993; Stepwise reassembly of the nuclear envelope at the end of mitosis. J Cell Biol 122:295–306
    [Google Scholar]
  6. Dambaugh T., Hennessy K., Chamnankit L., Kieff E. 1984; U2 region of Epstein–Barr virus DNA may encode Epstein–Barr nuclear antigen 2. Proc Natl Acad Sci U S A 81:7632–7636
    [Google Scholar]
  7. Dang C. V., Lee W. M. 1988; Identification of the human c-Myc protein nuclear translocation signal. Mol Cell Biol 8:4048–4054
    [Google Scholar]
  8. Dingwall C., Laskey R. A. 1991; Nuclear targeting sequences – a consensus?. Trends Biochem Sci 16:478–481
    [Google Scholar]
  9. Dingwall C., Laskey R. 1992; The nuclear membrane. Science 258:942–947
    [Google Scholar]
  10. Gorlich D., Kraft R., Kostka S., Vogel F., Hartmann E., Laskey R. A., Mattaj I. W., Izaurraide E. 1996; Importin provides a link between nuclear protein import and U snRNA export. Cell 87:21–32
    [Google Scholar]
  11. Guru S. C., Goldsmith P. K., Burns A. L., Marx S. J., Spiegel A. M., Collins F. S., Chandrasekharappa S. C. 1998; Menin, the product of the MEN1 gene, is a nuclear protein. Proc Natl Acad Sci U S A 95:1630–1634
    [Google Scholar]
  12. Hennekes H., Peter M., Weber K., Nigg E. A. 1993; Phosphorylation on protein kinase C sites inhibits nuclear import of lamin B2. J Cell Biol 120:1293–1304
    [Google Scholar]
  13. Huber J., Xiao Y., Reid J., Briggs C., Jans P., Jans D. 1996; Regulation of protein transport to the nucleus. Todays Life Sci 1:30–38
    [Google Scholar]
  14. Kieff E. 1996; Epstein–Barr virus and its replication. In Fields Virology , 3rd edn. pp  2343–2396 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  15. Kienzle N., Young D., Silins S. L., Sculley T. B. 1996; Induction of pleckstrin by the Epstein–Barr virus nuclear antigen 3 family. Virology 224:167–174
    [Google Scholar]
  16. Knauf J. A., Pendergrass S. H., Marrone B. L., Strniste G. F., MacInnes M. A., Park M. S. 1996; Multiple nuclear localization signals in XPG nuclease. Mutat Res 363:67–75
    [Google Scholar]
  17. Krauer K. G., Belzer D. K., Liaskou D., Buck M., Cross S., Honjo T., Sculley T. 1998; Regulation of interleukin-1beta transcription by Epstein–Barr virus involves a number of latent proteins via their interaction with RBP. Virology 252:418–430
    [Google Scholar]
  18. Le Roux A., Berebbi M., Moukaddem M., Perricaudet M., Joab I. 1993; Identification of a short amino acid sequence essential for efficient nuclear targeting of the Epstein–Barr virus nuclear antigen 3A. J Virol 67:1716–1720
    [Google Scholar]
  19. Liu K. D., Gaffen S. L., Goldsmith M. A. 1998; JAK/STAT signaling by cytokine receptors. Curr Opin Immunol 10:271–278
    [Google Scholar]
  20. Lyons R. H., Ferguson B. Q., Rosenberg M. 1987; Pentapeptide nuclear localization signal in adenovirus E1a. Mol Cell Biol 7:2451–2456
    [Google Scholar]
  21. Marshall D., Sample C. 1995; Epstein–Barr virus nuclear antigen 3C is a transcriptional regulator. J Virol 69:3624–3630
    [Google Scholar]
  22. Moll T., Tebb G., Surana U., Robitsch H., Nasmyth K. 1991; The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66:743–758
    [Google Scholar]
  23. Nakai K., Kanehisa M. 1992; A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14:897–911
    [Google Scholar]
  24. Ohta Y., Nishida E., Sakai H., Miyamoto E. 1989; Dephosphorylation of cofilin accompanies heat shock-induced nuclear accumulation of cofilin. J Biol Chem 264:16143–16148
    [Google Scholar]
  25. Parker G. A., Crook T., Bain M., Sara E. A., Farrell P. J., Allday M. J. 1996; Epstein–Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene 13:2541–2549
    [Google Scholar]
  26. Petti L., Sample C., Kieff E. 1990; Subnuclear localization and phosphorylation of Epstein–Barr virus latent infection nuclear proteins. Virology 176:563–574
    [Google Scholar]
  27. Radkov S. A., Bain M., Farrell P. J., West M., Rowe M., Allday M. J. 1997; Epstein–Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21. J Virol 71:8552–8562
    [Google Scholar]
  28. Radkov S. A., Touitou R., Brehm A., Rowe M., West M., Kouzarides T., Allday M. J. 1999; Epstein–Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription. J Virol 73:5688–5697
    [Google Scholar]
  29. Robbins P. A., McMichael A. J. 1991; Immune recognition of HLA molecules downmodulates CD8 expression on cytotoxic T lymphocytes. J Exp Med 173:221–230
    [Google Scholar]
  30. Roberts B. L., Richardson W. D., Smith A. E. 1987; The effect of protein context on nuclear location signal function. Cell 50:465–475
    [Google Scholar]
  31. Robertson E. S., Grossman S., Johannsen E., Miller C., Lin J., Tomkinson B., Kieff E. 1995; Epstein–Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J κ . J Virol 69:3108–3116
    [Google Scholar]
  32. Sambrook J., Russell D. W. 2001 Molecular Cloning , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Sample J., Kieff E. 1990; Transcription of the Epstein–Barr virus genome during latency in growth-transformed lymphocytes. J Virol 64:1667–1674
    [Google Scholar]
  34. Sample J., Hummel M., Braun D., Birkenbach M., Kieff E. 1986; Nucleotide sequences of mRNAs encoding Epstein–Barr virus nuclear proteins. A probable transcriptional initiation site. Proc Natl Acad Sci U S A 83:5096–5100
    [Google Scholar]
  35. Sample J., Kieff E. F., Kieff E. D. 1994; Epstein–Barr virus types 1 and 2 have nearly identical LMP-1 transforming genes. J Gen Virol 75:2741–2746
    [Google Scholar]
  36. Sculley T. B., Apolloni A., Stumm R., Moss D. J., Mueller-Lantczh N., Misko I. S., Cooper D. A. 1989; Expression of Epstein–Barr virus nuclear antigens 3, 4 and 6 are altered in cell lines containing B-type virus. Virology 171:401–408
    [Google Scholar]
  37. Shaulsky G., Goldfinger N., Ben-Ze'ev A., Rotter V. 1990; Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol Cell Biol 10:6565–6577
    [Google Scholar]
  38. Subramanian C., Robertson E. S. 2002; The metastatic suppressor Nm23-H1 interacts with EBNA3C at sequences located between the glutamine- and proline-rich domains and can cooperate in activation of transcription. J Virol 76:8702–8709
    [Google Scholar]
  39. Subramanian C., Cotter M. A., Robertson E. S. 2001; Epstein–Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: a molecular link to cancer metastasis. Nat Med 7:350–355
    [Google Scholar]
  40. Sudbeck P., Scherer G. 1997; Two independent nuclear localization signals are present in the DNA-binding high-mobility group domains of SRY and SOX9. J Biol Chem 272:27848–27852
    [Google Scholar]
  41. Wen S. T., Jackson P. K., Van Etten R. A. 1996; The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products. EMBO J 15:1583–1595
    [Google Scholar]
  42. Young D. B., Krauer K. G., Kienzle N., Sculley T. B. 1997; Both A and B type Epstein–Barr nuclear antigen interact with RBP-2N. J Gen Virol 78:1671–1674
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.19549-0
Loading
/content/journal/jgv/10.1099/vir.0.19549-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error