1887

Abstract

Epstein–Barr virus nuclear antigen (EBNA)-6 is essential for EBV-induced immortalization of primary human B-lymphocytes . Previous studies have shown that EBNA-6 acts as a transcriptional regulator of viral and cellular genes; however at present, few functional domains of the 140 kDa EBNA-6 protein have been completely characterized. There are five computer-predicted nuclear localization signals (NLS), four monopartite and one bipartite, present in the EBNA-6 amino acid sequence. To identify which of these NLS are functional, fusion proteins between green fluorescent protein and deletion constructs of EBNA-6 were expressed in HeLa cells. Each of the constructs containing at least one of the NLS was targeted to the nucleus of cells whereas a construct lacking all of the NLS was cytoplasmic. Site-directed mutation of these NLS demonstrated that only three of the NLS were functional, one at the N-terminal end (aa 72–80), one in the middle (aa 412–418) and one at the C-terminal end (aa 939–945) of the EBNA-6 protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19549-0
2004-01-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/1/vir850165.html?itemId=/content/journal/jgv/10.1099/vir.0.19549-0&mimeType=html&fmt=ahah

References

  1. Adldinger, H. K., Delius, H., Freese, U. K., Clarke, J. & Bornkamm, G. W. ( 1985; ). A putative transforming gene of Jijoye virus differs from that of Epstein–Barr virus prototypes. Virology 141, 221–234.[CrossRef]
    [Google Scholar]
  2. Allday, M. J., Crawford, D. H. & Thomas, J. A. ( 1993; ). Epstein–Barr virus (EBV) nuclear antigen 6 induces expression of the EBV latent membrane protein and an activated phenotype in Raji cells. J Gen Virol 74, 361–369.[CrossRef]
    [Google Scholar]
  3. Ambinder, R. F., Mullen, M. A., Chang, Y. N., Hayward, G. S. & Hayward, S. D. ( 1991; ). Functional domains of Epstein–Barr virus nuclear antigen EBNA-1. J Virol 65, 1466–1478.
    [Google Scholar]
  4. Bain, M., Watson, R. J., Farrell, P. J. & Allday, M. J. ( 1996; ). Epstein–Barr virus nuclear antigen 3c is a powerful repressor of transcription when tethered to DNA. J Virol 70, 2481–2489.
    [Google Scholar]
  5. Chaudhary, N. & Courvalin, J. C. ( 1993; ). Stepwise reassembly of the nuclear envelope at the end of mitosis. J Cell Biol 122, 295–306.[CrossRef]
    [Google Scholar]
  6. Dambaugh, T., Hennessy, K., Chamnankit, L. & Kieff, E. ( 1984; ). U2 region of Epstein–Barr virus DNA may encode Epstein–Barr nuclear antigen 2. Proc Natl Acad Sci U S A 81, 7632–7636.[CrossRef]
    [Google Scholar]
  7. Dang, C. V. & Lee, W. M. ( 1988; ). Identification of the human c-Myc protein nuclear translocation signal. Mol Cell Biol 8, 4048–4054.
    [Google Scholar]
  8. Dingwall, C. & Laskey, R. A. ( 1991; ). Nuclear targeting sequences – a consensus? Trends Biochem Sci 16, 478–481.[CrossRef]
    [Google Scholar]
  9. Dingwall, C. & Laskey, R. ( 1992; ). The nuclear membrane. Science 258, 942–947.[CrossRef]
    [Google Scholar]
  10. Gorlich, D., Kraft, R., Kostka, S., Vogel, F., Hartmann, E., Laskey, R. A., Mattaj, I. W. & Izaurraide, E. ( 1996; ). Importin provides a link between nuclear protein import and U snRNA export. Cell 87, 21–32.[CrossRef]
    [Google Scholar]
  11. Guru, S. C., Goldsmith, P. K., Burns, A. L., Marx, S. J., Spiegel, A. M., Collins, F. S. & Chandrasekharappa, S. C. ( 1998; ). Menin, the product of the MEN1 gene, is a nuclear protein. Proc Natl Acad Sci U S A 95, 1630–1634.[CrossRef]
    [Google Scholar]
  12. Hennekes, H., Peter, M., Weber, K. & Nigg, E. A. ( 1993; ). Phosphorylation on protein kinase C sites inhibits nuclear import of lamin B2. J Cell Biol 120, 1293–1304.[CrossRef]
    [Google Scholar]
  13. Huber, J., Xiao, Y., Reid, J., Briggs, C., Jans, P. & Jans, D. ( 1996; ). Regulation of protein transport to the nucleus. Todays Life Sci 1, 30–38.
    [Google Scholar]
  14. Kieff, E. ( 1996; ). Epstein–Barr virus and its replication. In Fields Virology, 3rd edn, pp. 2343–2396. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott–Raven.
  15. Kienzle, N., Young, D., Silins, S. L. & Sculley, T. B. ( 1996; ). Induction of pleckstrin by the Epstein–Barr virus nuclear antigen 3 family. Virology 224, 167–174.[CrossRef]
    [Google Scholar]
  16. Knauf, J. A., Pendergrass, S. H., Marrone, B. L., Strniste, G. F., MacInnes, M. A. & Park, M. S. ( 1996; ). Multiple nuclear localization signals in XPG nuclease. Mutat Res 363, 67–75.[CrossRef]
    [Google Scholar]
  17. Krauer, K. G., Belzer, D. K., Liaskou, D., Buck, M., Cross, S., Honjo, T. & Sculley, T. ( 1998; ). Regulation of interleukin-1beta transcription by Epstein–Barr virus involves a number of latent proteins via their interaction with RBP. Virology 252, 418–430.[CrossRef]
    [Google Scholar]
  18. Le Roux, A., Berebbi, M., Moukaddem, M., Perricaudet, M. & Joab, I. ( 1993; ). Identification of a short amino acid sequence essential for efficient nuclear targeting of the Epstein–Barr virus nuclear antigen 3A. J Virol 67, 1716–1720.
    [Google Scholar]
  19. Liu, K. D., Gaffen, S. L. & Goldsmith, M. A. ( 1998; ). JAK/STAT signaling by cytokine receptors. Curr Opin Immunol 10, 271–278.[CrossRef]
    [Google Scholar]
  20. Lyons, R. H., Ferguson, B. Q. & Rosenberg, M. ( 1987; ). Pentapeptide nuclear localization signal in adenovirus E1a. Mol Cell Biol 7, 2451–2456.
    [Google Scholar]
  21. Marshall, D. & Sample, C. ( 1995; ). Epstein–Barr virus nuclear antigen 3C is a transcriptional regulator. J Virol 69, 3624–3630.
    [Google Scholar]
  22. Moll, T., Tebb, G., Surana, U., Robitsch, H. & Nasmyth, K. ( 1991; ). The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66, 743–758.[CrossRef]
    [Google Scholar]
  23. Nakai, K. & Kanehisa, M. ( 1992; ). A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 897–911.[CrossRef]
    [Google Scholar]
  24. Ohta, Y., Nishida, E., Sakai, H. & Miyamoto, E. ( 1989; ). Dephosphorylation of cofilin accompanies heat shock-induced nuclear accumulation of cofilin. J Biol Chem 264, 16143–16148.
    [Google Scholar]
  25. Parker, G. A., Crook, T., Bain, M., Sara, E. A., Farrell, P. J. & Allday, M. J. ( 1996; ). Epstein–Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene 13, 2541–2549.
    [Google Scholar]
  26. Petti, L., Sample, C. & Kieff, E. ( 1990; ). Subnuclear localization and phosphorylation of Epstein–Barr virus latent infection nuclear proteins. Virology 176, 563–574.[CrossRef]
    [Google Scholar]
  27. Radkov, S. A., Bain, M., Farrell, P. J., West, M., Rowe, M. & Allday, M. J. ( 1997; ). Epstein–Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21. J Virol 71, 8552–8562.
    [Google Scholar]
  28. Radkov, S. A., Touitou, R., Brehm, A., Rowe, M., West, M., Kouzarides, T. & Allday, M. J. ( 1999; ). Epstein–Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription. J Virol 73, 5688–5697.
    [Google Scholar]
  29. Robbins, P. A. & McMichael, A. J. ( 1991; ). Immune recognition of HLA molecules downmodulates CD8 expression on cytotoxic T lymphocytes. J Exp Med 173, 221–230.[CrossRef]
    [Google Scholar]
  30. Roberts, B. L., Richardson, W. D. & Smith, A. E. ( 1987; ). The effect of protein context on nuclear location signal function. Cell 50, 465–475.[CrossRef]
    [Google Scholar]
  31. Robertson, E. S., Grossman, S., Johannsen, E., Miller, C., Lin, J., Tomkinson, B. & Kieff, E. ( 1995; ). Epstein–Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein Jκ. J Virol 69, 3108–3116.
    [Google Scholar]
  32. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Sample, J. & Kieff, E. ( 1990; ). Transcription of the Epstein–Barr virus genome during latency in growth-transformed lymphocytes. J Virol 64, 1667–1674.
    [Google Scholar]
  34. Sample, J., Hummel, M., Braun, D., Birkenbach, M. & Kieff, E. ( 1986; ). Nucleotide sequences of mRNAs encoding Epstein–Barr virus nuclear proteins. A probable transcriptional initiation site. Proc Natl Acad Sci U S A 83, 5096–5100.[CrossRef]
    [Google Scholar]
  35. Sample, J., Kieff, E. F. & Kieff, E. D. ( 1994; ). Epstein–Barr virus types 1 and 2 have nearly identical LMP-1 transforming genes. J Gen Virol 75, 2741–2746.[CrossRef]
    [Google Scholar]
  36. Sculley, T. B., Apolloni, A., Stumm, R., Moss, D. J., Mueller-Lantczh, N., Misko, I. S. & Cooper, D. A. ( 1989; ). Expression of Epstein–Barr virus nuclear antigens 3, 4 and 6 are altered in cell lines containing B-type virus. Virology 171, 401–408.[CrossRef]
    [Google Scholar]
  37. Shaulsky, G., Goldfinger, N., Ben-Ze'ev, A. & Rotter, V. ( 1990; ). Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol Cell Biol 10, 6565–6577.
    [Google Scholar]
  38. Subramanian, C. & Robertson, E. S. ( 2002; ). The metastatic suppressor Nm23-H1 interacts with EBNA3C at sequences located between the glutamine- and proline-rich domains and can cooperate in activation of transcription. J Virol 76, 8702–8709.[CrossRef]
    [Google Scholar]
  39. Subramanian, C., Cotter, M. A. & Robertson, E. S. ( 2001; ). Epstein–Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: a molecular link to cancer metastasis. Nat Med 7, 350–355.[CrossRef]
    [Google Scholar]
  40. Sudbeck, P. & Scherer, G. ( 1997; ). Two independent nuclear localization signals are present in the DNA-binding high-mobility group domains of SRY and SOX9. J Biol Chem 272, 27848–27852.[CrossRef]
    [Google Scholar]
  41. Wen, S. T., Jackson, P. K. & Van Etten, R. A. ( 1996; ). The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products. EMBO J 15, 1583–1595.
    [Google Scholar]
  42. Young, D. B., Krauer, K. G., Kienzle, N. & Sculley, T. B. ( 1997; ). Both A and B type Epstein–Barr nuclear antigen interact with RBP-2N. J Gen Virol 78, 1671–1674.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19549-0
Loading
/content/journal/jgv/10.1099/vir.0.19549-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error