1887

Abstract

Human cell lines are permissive for LuIII, a member of the rodent group of autonomous parvoviruses. However, LuIII vectors pseudotyped with feline panleukopaenia virus (FPV) capsid proteins can transduce feline cells but not human cells. Feline transferrin receptor (FelTfR) functions as a receptor for FPV. Transfection of Rh18A, a human rhabdomyosarcoma cell line, with FelTfR enabled transduction by vector with FPV capsid. This was not true of other human lines, suggesting restriction at some additional, post-entry, level(s) in human cells other than Rh18A. It seemed a reasonable hypothesis that a second blockage might be in nuclear delivery mediated by the N-terminal region of the minor capsid protein, VP1. We therefore generated virions containing an LuIII–luciferase genome, packaged using chimaeric VP1 molecules (N-terminal region of LuIII VP1, fused with body of FPV, and ) together with the major capsid protein, VP2, of FPV or LuIII. The virions were tested for ability to transduce feline and human cells. Our hypothesis predicted that the N-terminal region of LuIII VP1 should allow transduction of human cells expressing FelTfR, while the FPV N-terminal region should not allow transduction of human cells (except for Rh18A). The experimental results did not bear out either of these predictions. Therefore, the VP1 N-terminal region appears not to be a major determinant of permissiveness for LuIII, versus FPV, capsid in human cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19490-0
2004-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/5/vir851251.html?itemId=/content/journal/jgv/10.1099/vir.0.19490-0&mimeType=html&fmt=ahah

References

  1. Agbandje-McKenna M., Llamas-Saiz A. L., Wang F., Tattersall P., Rossmann M. G. 1998; Functional implications of the structure of the murine parvovirus, minute virus of mice. Structure 6:1369–1381
    [Google Scholar]
  2. Bowles D. E., Rabinowitz J. E., Samulski R. J. 2003; Marker rescue of adeno-associated virus (AAV) capsid mutants: a novel approach for chimeric AAV production. J Virol 77:423–432
    [Google Scholar]
  3. Carlson J., Rushlow K., Maxwell I., Maxwell F., Winston S., Hahn W. 1985; Cloning and sequence of DNA encoding structural proteins of the autonomous parvovirus feline panleukopenia virus. J Virol 55:574–582
    [Google Scholar]
  4. Clemens K. E., Cerutis D. R., Burger L. R., Yang C. Q., Pintel D. J. 1990; Cloning of minute virus of mice cDNAs and preliminary analysis of individual viral proteins expressed in murine cells. J Virol 64:3967–3973
    [Google Scholar]
  5. Corsini J., Carlson J. O., Maxwell F., Maxwell I. H. 1995; Symmetric strand packaging of recombinant parvovirus LuIII genomes that retain only the terminal regions. J Virol 69:2692–2696
    [Google Scholar]
  6. Cotmore S. F., Tattersall P. 1987; The autonomously replicating parvoviruses of vertebrates. Adv Virus Res 33:91–174
    [Google Scholar]
  7. Diffoot N., Chen K. C., Bates R. C., Lederman M. 1993; The complete nucleotide sequence of parvovirus LuIII and localization of a unique sequence possibly responsible for its encapsidation pattern. Virology 192:339–345
    [Google Scholar]
  8. Govindasamy L., Hueffer K., Parrish C. R., Agbandje-McKenna M. 2003; Structures of host range-controlling regions of the capsids of canine and feline parvoviruses and mutants. J Virol 77:12211–12221
    [Google Scholar]
  9. Hanson N. D., Rhode S. L. III 1991; Parvovirus NS1 stimulates P4 expression by interaction with the terminal repeats and through DNA amplification. J Virol 65:4325–4333
    [Google Scholar]
  10. Hauck B., Xiao W. 2003; Characterization of tissue tropism determinants of adeno-associated virus type 1. J Virol 77:2768–2774
    [Google Scholar]
  11. Horiuchi M., Ishiguro N., Goto H., Shinagawa M. 1992; Characterization of the stage(s) in the virus replication cycle at which the host-cell specificity of the feline parvovirus subgroup is regulated in canine cells. Virology 189:600–608
    [Google Scholar]
  12. Hueffer K., Parker J. S., Weichert W. S., Geisel R. E., Sgro J. Y., Parrish C. R. 2003a; The natural host range shift and subsequent evolution of canine parvovirus resulted from virus-specific binding to the canine transferrin receptor. J Virol 77:1718–1726
    [Google Scholar]
  13. Hueffer K., Govindasamy L., Agbandje-McKenna M., Parrish C. R. 2003b; Combinations of two capsid regions controlling canine host range determine canine transferrin receptor binding by canine and feline parvoviruses. J Virol 77:10099–10105
    [Google Scholar]
  14. Lombardo E., Ramirez J. C., Agbandje-McKenna M., Almendral J. M. 2000; A beta-stranded motif drives capsid protein oligomers of the parvovirus minute virus of mice into the nucleus for viral assembly. J Virol 74:3804–3814
    [Google Scholar]
  15. Lombardo E., Ramirez J. C., Garcia J., Almendral J. M. 2002; Complementary roles of multiple nuclear targeting signals in the capsid proteins of the parvovirus minute virus of mice during assembly and onset of infection. J Virol 76:7049–7059
    [Google Scholar]
  16. Marck C. 1988; ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16:1829–1836
    [Google Scholar]
  17. Martyn J. C., Davidson B. E., Studdert M. J. 1990; Nucleotide sequence of feline panleukopenia virus: comparison with canine parvovirus identifies host-specific differences. J Gen Virol 71:2747–2753
    [Google Scholar]
  18. Maxwell I. H., Maxwell F. 1988; Electroporation of mammalian cells with a firefly luciferase expression plasmid: kinetics of transient expression differ markedly among cell types. DNA 7:557–562
    [Google Scholar]
  19. Maxwell I. H., Maxwell F., Rhode S. L. III, Corsini J., Carlson J. O. 1993a; Recombinant LuIII autonomous parvovirus as a transient transducing vector for human cells. Hum Gene Ther 4:441–450
    [Google Scholar]
  20. Maxwell I. H., Long C. J., Carlson J. O., Rhode S. L. III, Maxwell F. 1993b; Encapsidation of a recombinant LuIII parvovirus genome by H1 virus and the fibrotropic or lymphotropic strains of minute virus of mice. J Gen Virol 74:1175–1179
    [Google Scholar]
  21. Maxwell I. H., Spitzer A. L., Maxwell F., Pintel D. J. 1995; The capsid determinant of fibrotropism for the MVMp strain of minute virus of mice functions via VP2 and not VP1. J Virol 69:5829–5832
    [Google Scholar]
  22. Maxwell I. H., Chapman J. T., Scherrer L. C., Spitzer A. L., Leptihn S., Maxwell F., Corsini J. A. 2001; Expansion of tropism of a feline parvovirus to target a human tumor cell line by display of an α v integrin binding peptide on the capsid. Gene Ther 8:324–331
    [Google Scholar]
  23. Maxwell I. H., Terrell K. L., Maxwell F. 2002; Autonomous parvovirus vectors. Methods 28:168–181
    [Google Scholar]
  24. Palermo L. M., Hueffer K., Parrish C. R. 2003; Residues in the apical domain of the feline and canine transferrin receptors control host-specific binding and cell infection of canine and feline parvoviruses. J Virol 77:8915–8923
    [Google Scholar]
  25. Parker J. S., Murphy W. J., Wang D., O'Brien S. J., Parrish C. R. 2001; Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. J Virol 75:3896–3902
    [Google Scholar]
  26. Robbins J., Dilworth S. M., Laskey R. A., Dingwall C. 1991; Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623
    [Google Scholar]
  27. Spalholz B. A., Tattersall P. 1983; Interaction of minute virus of mice with differentiated cells: strain-dependent target cell specificity is mediated by intracellular factors. J Virol 46:937–943
    [Google Scholar]
  28. Spitzer A. L., Maxwell F., Corsini J., Maxwell I. H. 1996; Species specificity for transduction of cultured cells by a recombinant LuIII rodent parvovirus genome encapsidated by canine parvovirus or feline panleukopenia virus. J Gen Virol 77:1787–1792
    [Google Scholar]
  29. Spitzer A. L., Parrish C. R., Maxwell I. H. 1997; Tropic determinant for canine parvovirus and feline panleukopenia virus functions through the capsid protein VP2. J Gen Virol 78:925–928
    [Google Scholar]
  30. Tsao J., Chapman M. S., Agbandje M. 8 other authors 1991; The three-dimensional structure of canine parvovirus and its functional implications. Science 251:1456–1464
    [Google Scholar]
  31. Tullis G. E., Burger L. R., Pintel D. J. 1993; The minor capsid protein VP1 of the autonomous parvovirus minute virus of mice is dispensable for encapsidation of progeny single-stranded DNA but is required for infectivity. J Virol 67:131–141
    [Google Scholar]
  32. Vihinen-Ranta M., Kakkola L., Kalela A., Vilja P., Vuento M. 1997; Characterization of a nuclear localization signal of canine parvovirus capsid proteins. Eur J Biochem 250:389–394
    [Google Scholar]
  33. Vihinen-Ranta M., Wang D., Weichert W. S., Parrish C. R. 2002; The VP1 N-terminal sequence of canine parvovirus affects nuclear transport of capsids and efficient cell infection. J Virol 76:1884–1891
    [Google Scholar]
  34. Zadori Z., Szelei J., Lacoste M. C., Li Y., Gariepy S., Raymond P., Allaire M., Nabi I. R., Tijssen P. 2001; A viral phospholipase A2 is required for parvovirus infectivity. Dev Cell 1:291–302
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19490-0
Loading
/content/journal/jgv/10.1099/vir.0.19490-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error