1887

Abstract

To achieve specific gene transfer into human CD4 cells, murine leukaemia virus (MLV)-based pseudotype vector particles were generated employing Env variants derived from human or simian immunodeficiency virus (HIV-1 or SIVagm). Here, we describe the generation of full-length onco/lentivirus hybrid genomes comprising components of MLV and HIV-1 or SIVagm, respectively, to assess the possibility of replication-competent hybrid virus formation. The reading frame of an infectious molecular clone of MLV was replaced with the analogous coding regions of HIV-1 or SIVagm encompassing the gene and accessory genes. Resulting MLV/HIV-1 or MLV/SIVagm hybrid genomes were transfected into 293T cells. Expression of viral proteins and budding of retroviral particles was shown by specific immunostaining and electron microscopy. The viral particles mediated CD4- and co-receptor-specific infection of human cells as demonstrated by PCR and immunostaining in the respective target cells. However, no productive infection resulting in the generation of infectious virus was detected in these cells. Thus, these onco/lentivirus hybrids, although able to initiate single-round infection, were not replication competent. Thus, MLV-based pseudotype vectors carrying Env variants of HIV-1 or SIVagm are not prone to form replication-competent retroviruses, suggesting a favourable safety profile for MLV-based CD4-specific pseudotype vectors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19479-0
2004-03-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/3/vir850665.html?itemId=/content/journal/jgv/10.1099/vir.0.19479-0&mimeType=html&fmt=ahah

References

  1. Adachi, A., Gendelman, H. E., Koenig, S., Folks, T., Willey, R., Rabson, A. & Martin, M. A. ( 1986; ). Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59, 284–291.
    [Google Scholar]
  2. Baier, M., Garber, C., Muller, C., Cichutek, K. & Kurth, R. ( 1990; ). Complete nucleotide sequence of a simian immunodeficiency virus from African green monkeys: a novel type of intragroup divergence. Virology 176, 216–221.[CrossRef]
    [Google Scholar]
  3. Cecilia, D., KewalRamani, V. N., O'Leary, J., Volsky, B., Nyambi, P., Burda, S., Xu, S., Littman, D. R. & Zolla-Pazner, S. ( 1998; ). Neutralization profiles of primary human immunodeficiency virus type 1 isolates in the context of coreceptor usage. J Virol 72, 6988–6996.
    [Google Scholar]
  4. Chen, B. K., Rousso, I., Shim, S. & Kim, P. S. ( 2001; ). Efficient assembly of an HIV-1/MLV Gag-chimeric virus in murine cells. Proc Natl Acad Sci U S A 98, 15239–15244.[CrossRef]
    [Google Scholar]
  5. Chong, H. & Vile, R. G. ( 1996; ). Replication-competent retrovirus produced by a ‘split-function’ third generation amphotropic packaging cell line. Gene Ther 3, 624–629.
    [Google Scholar]
  6. Chong, H., Starkey, W. & Vile, R. G. ( 1998; ). A replication-competent retrovirus arising from a split-function packaging cell line was generated by recombination events between the vector, one of the packaging constructs, and endogenous retroviral sequences. J Virol 72, 2663–2670.
    [Google Scholar]
  7. Cornetta, K., Morgan, R. A. & Anderson, W. F. ( 1991; ). Safety issues related to retroviral-mediated gene transfer in humans. Hum Gene Ther 2, 5–14.[CrossRef]
    [Google Scholar]
  8. Deminie, C. A. & Emerman, M. ( 1994; ). Functional exchange of an oncoretrovirus and a lentivirus matrix protein. J Virol 68, 4442–4449.
    [Google Scholar]
  9. Donahue, R. E., Kessler, S. W., Bodine, D. & 7 other authors ( 1992; ). Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 176, 1125–1135.[CrossRef]
    [Google Scholar]
  10. Edinger, A. L., Hoffman, T. L., Sharron, M., Lee, B., O'Dowd, B. & Doms, R. W. ( 1998; ). Use of GPR1, GPR15, and STRL33 as coreceptors by diverse human immunodeficiency virus type 1 and simian immunodeficiency virus envelope proteins. Virology 249, 367–378.[CrossRef]
    [Google Scholar]
  11. Gelderblom, H. R., Hausmann, E. H., Özel, M., Pauli, G. & Koch, M. A. ( 1987; ). Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 156, 171–176.[CrossRef]
    [Google Scholar]
  12. König, R. R., Flory, E., Steidl, S., Neumann, J., Coulibaly, C., Holznagel, E., Holzammer, S., Norley, S. & Cichutek, K. ( 2002; ). Engineered CD4- and CXCR4-using simian immunodeficiency virus from African green monkeys is neutralization sensitive and replicates in nonstimulated lymphocytes. J Virol 76, 10627–10636.[CrossRef]
    [Google Scholar]
  13. Lodge, R., Subbramanian, R. A., Forget, J., Lemay, G. & Cohen, E. A. ( 1998; ). MuLV-based vectors pseudotyped with truncated HIV glycoproteins mediate specific gene transfer in CD4+ peripheral blood lymphocytes. Gene Ther 5, 655–664.[CrossRef]
    [Google Scholar]
  14. Malmsten, A., Ekstrand, D. H. L., Akerblom, L., Gronowitz, J. S., Källander, C. F. R., Bendinelli, M. & Matteucci, D. ( 1998; ). A colorimetric reverse transcriptase assay optimized for Moloney murine leukemia virus, and its use for characterization of reverse transcriptases of unknown identity. J Virol Methods 75, 9–20.[CrossRef]
    [Google Scholar]
  15. Mammano, F., Salvatori, F., Indraccolo, S., De Rossi, A., Chieco-Bianchi, L. & Göttlinger, H. ( 1997; ). Truncation of the human immunodeficiency virus type 1 envelope glycoprotein allows efficient pseudotyping of Moloney murine leukemia virus particles and gene transfer into CD4+ cells. J Virol 71, 3341–3345.
    [Google Scholar]
  16. Nasioulas, G., Zolotukhin, A. S., Tabernero, C., Solomin, L., Cunningham, C. P., Pavlakis, G. N. & Felber, B. K. ( 1994; ). Elements distinct from human immunodeficiency virus type 1 splice sites are responsible for the Rev dependence of env mRNA. J Virol 68, 2986–2993.
    [Google Scholar]
  17. Ott, D., Friedrich, R. & Rein, A. ( 1990; ). Sequence analysis of amphotropic and 10A1 murine leukemia viruses: close relationship to mink cell focus-inducing viruses. J Virol 64, 757–766.
    [Google Scholar]
  18. Purcell, D. F., Broscius, C. M., Vanin, E. F., Buckler, C. E., Nienhuis, A. W. & Martin, M. A. ( 1996; ). An array of murine leukemia virus-related elements is transmitted and expressed in a primate recipient of retroviral gene transfer. J Virol 70, 887–897.
    [Google Scholar]
  19. Reed, M., Mariani, R., Sheppard, L., Pekrun, K., Landau, N. R. & Soong, N. W. ( 2002; ). Chimeric human immunodeficiency virus type 1 containing murine leukemia virus matrix assembles in murine cells. J Virol 76, 436–443.[CrossRef]
    [Google Scholar]
  20. Reiprich, S., Gundlach, B. R., Fleckenstein, B. & Überla, K. ( 1997; ). Replication-competent chimeric lenti-oncovirus with expanded host cell tropism. J Virol 71, 3328–3331.
    [Google Scholar]
  21. Rousso, I., Mixon, M. B., Chen, B. K. & Kim, P. S. ( 2000; ). Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proc Natl Acad Sci U S A 97, 13523–13525.[CrossRef]
    [Google Scholar]
  22. Schnierle, B. S., Stitz, J., Bosch, V., Nocken, F., Merget-Millitzer, H., Engelstädter, M., Kurth, R., Groner, B. & Cichutek, K. ( 1997; ). Pseudotyping of murine leukemia virus with the envelope glycoproteins of HIV generates a retroviral vector with specificity of infection for CD4-expressing cells. Proc Natl Acad Sci U S A 94, 8640–8645.[CrossRef]
    [Google Scholar]
  23. Shikova-Lekova, E., Lindemann, D., Pietschmann, T., Juretzek, T., Rudolph, W., Herchenröder, O., Gelderblom, H. R. & Rethwilm, A. ( 2003; ). Replication-competent hybrids between murine leukemia virus and foamy virus. J Virol 77, 7677–7681.[CrossRef]
    [Google Scholar]
  24. Skov, H. & Andersen, K. B. ( 1993; ). Mutational analysis of Moloney murine leukaemia virus surface protein gp70. J Gen Virol 74, 707–714.[CrossRef]
    [Google Scholar]
  25. Steidl, S., Stitz, J., Schmitt, I., König, R., Flory, E., Schweizer, M. & Cichutek, K. ( 2002; ). Coreceptor switch of [MLV(SIVagm)] pseudotype vectors by V3–loop exchange. Virology 300, 205–216.[CrossRef]
    [Google Scholar]
  26. Stitz, J., Steidl, S., Merget-Millitzer, H. & 9 other authors ( 2000; ). MLV-derived retroviral vectors selective for CD4-expressing cells and resistant to neutralization by sera from HIV-infected patients. Virology 267, 229–236.[CrossRef]
    [Google Scholar]
  27. Wilk, T., Pfeifer, T. & Bosch, V. ( 1992; ). Retained in vitro infectivity and cytopathogenicity of HIV-1 despite truncation of the C-terminal tail of the env gene product. Virology 189, 167–177.[CrossRef]
    [Google Scholar]
  28. Zhang, J. & Temin, H. M. ( 1993; ). Rate and mechanism of nonhomologous recombination during a single cycle of retroviral replication. Science 259, 234–238.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19479-0
Loading
/content/journal/jgv/10.1099/vir.0.19479-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error