1887

Abstract

A cytopathic agent (A308/99) was isolated using Vero cells from a stool specimen of a 1-year-old patient with transient paralysis. The agent was approximately 28 nm in diameter with a distinct ultrastructure resembling the virus particle of an enterovirus. It could not be neutralized by antisera against human picornaviruses such as human enterovirus, Aichi virus or human parechovirus. The virion contained three capsid proteins with molecular masses of 38, 30·3 and 30 kDa. Determination of the complete nucleotide sequence of A308/99 revealed that the nucleotide and deduced amino acid sequences were closely related to those of human parechoviruses. When 11 regions encoding the structural and non-structural proteins were compared, A308/99 had between 75 and 97 % and 73 and 97 % nucleotide identity with human parechovirus type 1 (HPeV-1) and type 2 (HPeV-2), respectively. The most distinctive divergence was seen in VP1, which had 74·5 % and 73·1 % nucleotide identity with HPeV-1 and HPeV-2, respectively. Viruses related to A308/99 were also isolated from three patients with gastroenteritis, exanthema or respiratory illnesses. A308/99 and these other three isolates had no arginine–glycine–aspartic acid (RGD) motif, which is located near the C terminus of VP1 in HPeV-1 and HPeV-2. A seroepidemiological study revealed that the prevalence of A308/99 antibodies was low (15 %) among infants but became higher with age, reaching more than 80 % by 30 years of age. These observations indicate that A308/99 is genetically close to, but serologically and genetically distinct from, HPeV-1 and HPeV-2 and accordingly can be classified as third serotype of human parechovirus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19456-0
2004-02-01
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/2/vir850391.html?itemId=/content/journal/jgv/10.1099/vir.0.19456-0&mimeType=html&fmt=ahah

References

  1. Baranowski, E., Ruiz-Jarabo, C. M., Sevilla, N., Amdreu, D., Beck, E. & Domingo, E. ( 2000; ). Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J Virol 74, 1641–1647.[CrossRef]
    [Google Scholar]
  2. Birenbaum, E., Handsher, R., Kuint, J., Dagan, R., Raichman, B., Mendelson, E. & Linder, N. ( 1997; ). Echovirus type 22 outbreak associated with gastro-intestinal disease in a neonatal intensive care unit. Am J Perinatol 14, 469–473.[CrossRef]
    [Google Scholar]
  3. Boonyakiat, Y., Hughes, P. J., Ghazi, F. & Stanway, G. ( 2001; ). Arginine-glycine-aspartic acid motif is critical for human parechovirus1 entry. J Virol 75, 10000–10004.[CrossRef]
    [Google Scholar]
  4. Ehrnst, A. & Eriksson, M. ( 1993; ). Epidemiological features of type 22 echovirus infection. Scand J Infect Dis 25, 275–281.[CrossRef]
    [Google Scholar]
  5. Ehrnst, A. & Eriksson, M. ( 1996; ). Echovirus type 23 observed as a nosocomial infection in infants. Scand J Infect Dis 28, 205–206.[CrossRef]
    [Google Scholar]
  6. Figueroa, J. P., Ashley, D., King, D. & Hull, B. ( 1989; ). An outbreak of acute flaccid paralysis in Jamaica associated with echovirus type 22. J Med Virol 29, 315–319.[CrossRef]
    [Google Scholar]
  7. Fox, G., Parry, N. A., Barnett, P. V., McGinn, B., Rowlands, D. J. & Brown, F. ( 1989; ). The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J Gen Virol 70, 625–637.[CrossRef]
    [Google Scholar]
  8. Ghazi, F., Hughes, P. J., Hyypiä, T. & Stanway, G. ( 1998; ). Molecular analysis of human parechovirus type 2 (formerly echovirus 23). J Gen Virol 79, 2641–2650.
    [Google Scholar]
  9. Hamparian, V. V. ( 1979; ). Rhinoviruses. In Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections, 5th edn, pp. 535–575. Edited by E. H. Lennette & N. J. Schmidt. Washington, DC: American Public Health Association.
  10. Hughes, P. J., Horsnell, C., Hyypiä, T. & Stanway, G. ( 1995; ). The coxsackievirus A9 RGD motif is not essential for virus infectivity. J Virol 69, 8035–8040.
    [Google Scholar]
  11. Hynes, R. O. ( 1992; ). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25.[CrossRef]
    [Google Scholar]
  12. Hyypiä, T., Horsnell, C., Maaronen, M., Khan, M., Kalkkinen, N., Auvinen, P., Kinnunen, L. & Stanway, G. ( 1992; ). A distinct picornavirus group identified by sequence analysis. Proc Natl Acad Sci U S A 89, 8847–8851.[CrossRef]
    [Google Scholar]
  13. Joki-Korpela, P. & Hyypiä, T. ( 1998; ). Diagnosis and epidemiology of echovirus 22 infections. Clin Infect Dis 26, 129–136.
    [Google Scholar]
  14. Joki-Korpela, P., Roivainen, M., Poyry, T. & Hyypiä, T. ( 2000; ). Antigenic properties of human parechovirus 1. J Med Virol 81, 1709–1718.
    [Google Scholar]
  15. Ketler, A., Hamparian, V. V. & Hilleman, M. R. ( 1962; ). Characterization and classification of ECHO 28-rhinovirus-coryzavirus agents. Proc Soc Exp Biol Med 110, 821–831.[CrossRef]
    [Google Scholar]
  16. King, A. M. Q., Brown, F., Christian, P. & 8 other authors ( 2000; ). Picornaviridae. In Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses, pp. 657–673. Edited by M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle & R. B. Wickner. San Diego: Academic Press.
  17. Koskiniemi, M., Paetau, R. & Linnavuori, K. ( 1989; ). Severe encephalitis associated with disseminated echovirus 22 infection. Scand J Infect Dis 21, 463–466.[CrossRef]
    [Google Scholar]
  18. Muir, P., Kammerer, U., Koru, K., Mulders, M. N., Doyry, T., Weissbrich, B., Kandolf, R., Cleator, G. M. & Vanloon, A. M. ( 1998; ). Molecular typing of enteroviruses: current status and future requirements. The European Union concerted action on virus meningitis and encephalitis. Clin Microbiol Rev 1, 202–227.
    [Google Scholar]
  19. Nakao, T. & Miura, R. ( 1970; ). ECHO virus type 22 infection in a premature infant. Tohoku J Exp Med 102, 61–68.[CrossRef]
    [Google Scholar]
  20. Oberste, M. S., Maher, K. & Pallansch, M. A. ( 1998; ). Complete sequence of echovirus 23 and its relationship to echovirus 22 and other human enterovirus. Virus Res 56, 217–223.[CrossRef]
    [Google Scholar]
  21. Ruoslahti, E. & Pierschbacher, M. D. ( 1987; ). New perspectives in cell adhesion: RGD and integrins. Science 238, 491–493.[CrossRef]
    [Google Scholar]
  22. Sato, N., Sato, H., Kawana, R. & Matumoto, M. ( 1972; ). Ecological behaviour of 6 coxsackie B and 29 echo serotypes as revealed by serologic survey of general population in Aomori, Japan. Jap J Med Sci Biol 25, 355–368.[CrossRef]
    [Google Scholar]
  23. Schnurr, D., Dondero, M., Holland, M. & Connor, J. ( 1996; ). Characterization of echovirus 22 variants. Arch Virol 141, 1749–1758.[CrossRef]
    [Google Scholar]
  24. Stanway, G. ( 1990; ). Structure, function and evolution of picornavirus. J Gen Virol 71, 2483–2501.[CrossRef]
    [Google Scholar]
  25. Stanway, G. & Hyypiä, T. ( 1999; ). Parechoviruses. J Virol 73, 5249–5254.
    [Google Scholar]
  26. Stanway, G., Kalkkinen, N., Roivainen, M., Ghazi, F., Khan, M., Smyth, M., Meurman, O. & Hyypiä, T. ( 1994; ). Molecular and biological characteristics of echovirus 22, a representative of a new picornavirus group. J Virol 68, 8232–8238.
    [Google Scholar]
  27. Supanaranond, K., Takeda, N. & Yamazaki, S. ( 1992; ). The complete nucleotide sequence of a variant of coxsackievirus A24, an agent causing acute hemorrhagic conjunctivitis. Virus Genes 6, 149–158.[CrossRef]
    [Google Scholar]
  28. Yamashita, T., Sugiyama, M., Tsuzuki, H., Sakae, K., Suzuki, Y. & Miyazaki, Y. ( 2000; ). Application of a polymerase chain reaction for identification and differentiation of Aichi virus, a new member of the picornavirus family associated with gastroenteritis in humans. J Clin Microbiol 38, 2955–2961.
    [Google Scholar]
  29. Zimmermann, H., Eggers, H. J., Kraus, W. & Nelsen-Salz, B. ( 1995; ). Complete nucleotide sequence and biological properties of an infectious clone of prototype echovirus 9. Virus Res 39, 311–319.[CrossRef]
    [Google Scholar]
  30. Zimmermann, H., Eggers, H. J., Kraus, W. & Nelsen-Salz, B. ( 1997; ). Cell attachment and mouse virulence of echovirus 9 correlate with an RGD motif in the capsid protein VP1. Virology 233, 149–156.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19456-0
Loading
/content/journal/jgv/10.1099/vir.0.19456-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error