1887

Abstract

Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is a phosphoprotein suggested to play important roles in EBV-induced immortalization. Earlier studies have shown that the major site of phosphorylation of EBNA-LP by cellular kinase(s) is a serine residue at position 35 (Ser-35) and that the phosphorylation of Ser-35 is critical for regulation of the coactivator function of EBNA-LP ( Yokoyama ., , 5119–5128, 2001 ). In the present study, we have attempted to identify protein kinase(s) responsible for the phosphorylation of EBNA-LP at Ser-35. A purified chimeric protein consisting of glutathione -transferase (GST) fused to a domain of EBNA-LP containing Ser-35 was found to be specifically phosphorylated by purified cdc2 , while GST fused to a mutated domain of EBNA-LP in which Ser-35 was replaced with alanine was not. In addition, overexpression of cdc2 in mammalian cells caused a significant increase in the phosphorylation of EBNA-LP, while this increased phosphorylation was eliminated if Ser-35 of EBNA-LP was replaced with alanine. These results indicate that the cellular protein kinase cdc2 mediates the phosphorylation of EBNA-LP at Ser-35. Recently, we reported that cdc2 and conserved protein kinases encoded by herpesviruses phosphorylate the same amino acid residue of target proteins ( Kawaguchi ., , 2359–2368, 2003 ). Consistent with this, the EBV-encoded conserved protein kinase BGLF4 specifically mediated the phosphorylation of EBNA-LP at Ser-35. These results indicate that the coactivator function of EBNA-LP can be regulated by the activity of these cellular and viral protein kinases.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19454-0
2003-12-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/12/vir843381.html?itemId=/content/journal/jgv/10.1099/vir.0.19454-0&mimeType=html&fmt=ahah

References

  1. Alfieri, C., Birkenbach, M. & Kieff, E. ( 1991; ). Early events in Epstein–Barr virus infection of human B lymphocytes. Virology 181, 595–608.[CrossRef]
    [Google Scholar]
  2. Allan, G. J., Inman, G. J., Parker, B. D., Rowe, D. T. & Farrell, P. J. ( 1992; ). Cell growth effects of Epstein–Barr virus leader protein. J Gen Virol 73, 1547–1551.[CrossRef]
    [Google Scholar]
  3. Bandobashi, K., Maeda, A., Teramoto, N., Nagy, N., Szekely, L., Taguchi, H., Miyoshi, I., Klein, G. & Klein, E. ( 2001; ). Intranuclear localization of the transcription coadaptor CBP/p300 and the transcription factor RBP-Jk in relation to EBNA-2 and -5 in B lymphocytes. Virology 288, 275–282.[CrossRef]
    [Google Scholar]
  4. Ben-Sasson, S. A. & Klein, G. ( 1981; ). Activation of the Epstein–Barr virus genome by 5-aza-cytidine in latently infected human lymphoid lines. Int J Cancer 28, 131–135.[CrossRef]
    [Google Scholar]
  5. Chee, M. S., Lawrence, G. L. & Barrell, B. G. ( 1989; ). Alpha-, beta- and gammaherpesviruses encode a putative phosphotransferase. J Gen Virol 70, 1151–1160.[CrossRef]
    [Google Scholar]
  6. Chen, M. R., Chang, S. J., Huang, H. & Chen, J. Y. ( 2000; ). A protein kinase activity associated with Epstein–Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro. J Virol 74, 3093–3104.[CrossRef]
    [Google Scholar]
  7. Chung, T. D., Wymer, J. P., Smith, C. C., Kulka, M. & Aurelian, L. ( 1989; ). Protein kinase activity associated with the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). J Virol 63, 3389–3398.
    [Google Scholar]
  8. Cohen, J. I., Wang, F., Mannick, J. & Kieff, E. ( 1989; ). Epstein–Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci U S A 86, 9558–9562.[CrossRef]
    [Google Scholar]
  9. Cunningham, C., Davison, A. J., Dolan, A., Frame, M. C., McGeoch, D. J., Meredith, D. M., Moss, H. W. & Orr, A. C. ( 1992; ). The UL13 virion protein of herpes simplex virus type 1 is phosphorylated by a novel virus-induced protein kinase. J Gen Virol 73, 303–311.[CrossRef]
    [Google Scholar]
  10. de Wind, N., Domen, J. & Berns, A. ( 1992; ). Herpesviruses encode an unusual protein-serine/threonine kinase which is nonessential for growth in cultured cells. J Virol 66, 5200–5209.
    [Google Scholar]
  11. Gershburg, E. & Pagano, J. S. ( 2002; ). Phosphorylation of the Epstein–Barr virus (EBV) DNA polymerase processivity factor EA-D by the EBV-encoded protein kinase and effects of the l-riboside benzimidazole 1263W94. J Virol 76, 998–1003.[CrossRef]
    [Google Scholar]
  12. Hammerschmidt, W. & Sugden, B. ( 1989; ). Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature 340, 393–397.[CrossRef]
    [Google Scholar]
  13. Han, I., Harada, S., Weaver, D., Xue, Y., Lane, W., Orstavik, S., Skalhegg, B. & Kieff, E. ( 2001; ). EBNA-LP associates with cellular proteins including DNA-PK and HA95. J Virol 75, 2475–2481.[CrossRef]
    [Google Scholar]
  14. Han, I., Xue, Y., Harada, S., Orstavik, S., Skalhegg, B. & Kieff, E. ( 2002; ). Protein kinase A associates with HA95 and affects transcriptional coactivation by Epstein–Barr virus nuclear proteins. Mol Cell Biol 22, 2136–2146.[CrossRef]
    [Google Scholar]
  15. Hanks, S. K., Quinn, A. M. & Hunter, T. ( 1988; ). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52.[CrossRef]
    [Google Scholar]
  16. Harada, S. & Kieff, E. ( 1997; ). Epstein–Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J Virol 71, 6611–6618.
    [Google Scholar]
  17. He, Z., He, Y. S., Kim, Y., Chu, L., Ohmstede, C., Biron, K. K. & Coen, D. M. ( 1997; ). The human cytomegalovirus UL97 protein is a protein kinase that autophosphorylates on serines and threonines. J Virol 71, 405–411.
    [Google Scholar]
  18. Hudewentz, J., Bornkamm, G. W. & zur Hausen, H. ( 1980; ). Effect of the diterpene ester TPA on Epstein–Barr virus antigen- and DNA synthesis in producer and nonproducer cell lines. Virology 100, 175–178.[CrossRef]
    [Google Scholar]
  19. Igarashi, M., Kawaguchi, Y., Hirai, K. & Mizuno, F. ( 2003; ). Physical interaction of Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) with human oestrogen-related receptor 1 (hERR1): hERR1 interacts with a conserved domain of EBNA-LP that is critical for EBV-induced B-cell immortalization. J Gen Virol 84, 319–327.[CrossRef]
    [Google Scholar]
  20. Jiang, W. Q., Szekely, L., Wendel-Hansen, V., Ringertz, N., Klein, G. & Rosen, A. ( 1991; ). Co-localization of the retinoblastoma protein and the Epstein–Barr virus-encoded nuclear antigen EBNA-5. Exp Cell Res 197, 314–318.[CrossRef]
    [Google Scholar]
  21. Kato, K., Kawaguchi, Y., Tanaka, M. & 10 other authors ( 2001; ). Epstein–Barr virus-encoded protein kinase BGLF4 mediates hyperphosphorylation of cellular elongation factor 1δ (EF-1δ): EF-1δ is universally modified by conserved protein kinases of herpesviruses in mammalian cells. J Gen Virol 82, 1457–1463.
    [Google Scholar]
  22. Kawaguchi, Y., Bruni, R. & Roizman, B. ( 1997a; ). Interaction of herpes simplex virus 1 alpha regulatory protein ICP0 with elongation factor 1delta: ICP0 affects translational machinery. J Virol 71, 1019–1024.
    [Google Scholar]
  23. Kawaguchi, Y., Van Sant, C. & Roizman, B. ( 1997b; ). Herpes simplex virus 1 alpha regulatory protein ICP0 interacts with and stabilizes the cell cycle regulator cyclin D3. J Virol 71, 7328–7336.
    [Google Scholar]
  24. Kawaguchi, Y., Van Sant, C. & Roizman, B. ( 1998; ). Eukaryotic elongation factor 1δ is hyperphosphorylated by the protein kinase encoded by the U(L)13 gene of herpes simplex virus 1. J Virol 72, 1731–1736.
    [Google Scholar]
  25. Kawaguchi, Y., Matsumura, T., Roizman, B. & Hirai, K. ( 1999; ). Cellular elongation factor 1δ is modified in cells infected with representative alpha-, beta-, or gammaherpesviruses. J Virol 73, 4456–4460.
    [Google Scholar]
  26. Kawaguchi, Y., Nakajima, K., Igarashi, M. & 8 other authors ( 2000; ). Interaction of Epstein–Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP. J Virol 74, 10104–10111.[CrossRef]
    [Google Scholar]
  27. Kawaguchi, Y., Tanaka, M., Yokoymama, A., Matsuda, G., Kato, K., Kagawa, H., Hirai, K. & Roizman, B. ( 2001; ). Herpes simplex virus 1 alpha regulatory protein ICP0 functionally interacts with cellular transcription factor BMAL1. Proc Natl Acad Sci U S A 98, 1877–1882.
    [Google Scholar]
  28. Kawaguchi, Y., Kato, K., Tanaka, M., Kanamori, M., Nishiyama, Y. & Yamanashi, Y. ( 2003; ). Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1δ. J Virol 77, 2359–2368.[CrossRef]
    [Google Scholar]
  29. Kaye, K. M., Izumi, K. M. & Kieff, E. ( 1993; ). Epstein–Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A 90, 9150–9154.[CrossRef]
    [Google Scholar]
  30. Kenyon, T. K., Lynch, J., Hay, J., Ruyechan, W. & Grose, C. ( 2001; ). Varicella-zoster virus ORF47 protein serine kinase: characterization of a cloned, biologically active phosphotransferase and two viral substrates, ORF62 and ORF63. J Virol 75, 8854–8858.[CrossRef]
    [Google Scholar]
  31. Kieff, E. & Rickinson, A. B. ( 2001; ). Epstein–Barr Virus and its replication. In Fields Virology, 4th edn, pp. 2511–2573. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott-Williams & Wilkins.
  32. Kitay, M. K. & Rowe, D. T. ( 1996a; ). Cell cycle stage-specific phosphorylation of the Epstein–Barr virus immortalization protein EBNA-LP. J Virol 70, 7885–7893.
    [Google Scholar]
  33. Kitay, M. K. & Rowe, D. T. ( 1996b; ). Protein–protein interactions between Epstein–Barr virus nuclear antigen-LP and cellular gene products: binding of 70-kilodalton heat shock proteins. Virology 220, 91–99.[CrossRef]
    [Google Scholar]
  34. Litchfield, D. W., Lozeman, F. J., Cicirelli, M. F., Harrylock, M., Ericsson, L. H., Piening, C. J. & Krebs, E. G. ( 1991; ). Phosphorylation of the beta subunit of casein kinase II in human A431 cells. Identification of the autophosphorylation site and a site phosphorylated by p34cdc2. J Biol Chem 266, 20380–20389.
    [Google Scholar]
  35. Luka, J., Kallin, B. & Klein, G. ( 1979; ). Induction of the Epstein–Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94, 228–231.[CrossRef]
    [Google Scholar]
  36. McCann, E. M., Kelly, G. L., Rickinson, A. B. & Bell, A. I. ( 2001; ). Genetic analysis of the Epstein–Barr virus-coded leader protein EBNA-LP as a co-activator of EBNA2 function. J Gen Virol 82, 3067–3079.
    [Google Scholar]
  37. McGeoch, D. J. & Davison, A. J. ( 1986; ). Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses. Nucleic Acids Res 14, 1765–1777.[CrossRef]
    [Google Scholar]
  38. Mannick, J. B., Cohen, J. I., Birkenbach, M., Marchini, A. & Kieff, E. ( 1991; ). The Epstein–Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J Virol 65, 6826–6837.
    [Google Scholar]
  39. Mannick, J. B., Tong, X., Hemnes, A. & Kieff, E. ( 1995; ). The Epstein–Barr virus nuclear antigen leader protein associates with hsp72/hsc73. J Virol 69, 8169–8172.
    [Google Scholar]
  40. Marchini, A., Cohen, J. I., Wang, F. & Kieff, E. ( 1992; ). A selectable marker allows investigation of a nontransforming Epstein–Barr virus mutant. J Virol 66, 3214–3219.
    [Google Scholar]
  41. Marin, O., Meggio, F., Draetta, G. & Pinna, L. A. ( 1992; ). The consensus sequences for cdc2 kinase and for casein kinase-2 are mutually incompatible. A study with peptides derived from the beta-subunit of casein kinase-2. FEBS Lett 301, 111–114.[CrossRef]
    [Google Scholar]
  42. Matsuda, G., Nakajima, K., Kawaguchi, Y., Yamanashi, Y. & Hirai, K. ( 2003; ). Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) forms complexes with a cellular anti-apoptosis protein Bcl-2 or its EBV counterpart BHRF1 through HS1-associated protein X-1. Microbiol Immunol 47, 91–99.[CrossRef]
    [Google Scholar]
  43. Nitsche, F., Bell, A. & Rickinson, A. ( 1997; ). Epstein–Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J Virol 71, 6619–6628.
    [Google Scholar]
  44. Overton, H. A., McMillan, D. J., Klavinskis, L. S., Hope, L., Ritchie, A. J. & Wong-kai-in, P. ( 1992; ). Herpes simplex virus type 1 gene UL13 encodes a phosphoprotein that is a component of the virion. Virology 190, 184–192.[CrossRef]
    [Google Scholar]
  45. Peng, R., Gordadze, A. V., Fuentes Panana, E. M., Wang, F., Zong, J., Hayward, G. S., Tan, J. & Ling, P. D. ( 2000a; ). Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol 74, 379–389.[CrossRef]
    [Google Scholar]
  46. Peng, R., Tan, J. & Ling, P. D. ( 2000b; ). Conserved regions in the Epstein–Barr virus leader protein define distinct domains required for nuclear localization and transcriptional cooperation with EBNA2. J Virol 74, 9953–9963.[CrossRef]
    [Google Scholar]
  47. Petti, L., Sample, C. & Kieff, E. ( 1990; ). Subnuclear localization and phosphorylation of Epstein–Barr virus latent infection nuclear proteins. Virology 176, 563–574.[CrossRef]
    [Google Scholar]
  48. Ragona, G., Ernberg, I. & Klein, G. ( 1980; ). Induction and biological characterization of the Epstein–Barr virus (EBV) carried by the Jijoye lymphoma line. Virology 101, 553–557.[CrossRef]
    [Google Scholar]
  49. Rickinson, A. B. & Kieff, E. ( 2001; ). Epstein–Barr virus. In Fields Virology, 4th edn, pp. 2575–2627. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott-Williams & Wilkins.
  50. Saemundsen, A. K., Kallin, B. & Klein, G. ( 1980; ). Effect of n-butyrate on cellular and viral DNA synthesis in cells latently infected with Epstein–Barr virus. Virology 107, 557–561.[CrossRef]
    [Google Scholar]
  51. Sinclair, A. J., Palmero, I., Peters, G. & Farrell, P. J. ( 1994; ). EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein–Barr virus. EMBO J 13, 3321–3328.
    [Google Scholar]
  52. Smith, R. F. & Smith, T. F. ( 1989; ). Identification of new protein kinase-related genes in three herpesviruses, herpes simplex virus, varicella-zoster virus, and Epstein–Barr virus. J Virol 63, 450–455.
    [Google Scholar]
  53. Smits, V. A. & Medema, R. H. ( 2001; ). Checking out the G2/M transition. Biochim Biophys Acta 1519, 1–12.[CrossRef]
    [Google Scholar]
  54. Stevenson, D., Colman, K. L. & Davison, A. J. ( 1994; ). Characterization of the putative protein kinases specified by varicella-zoster virus genes 47 and 66. J Gen Virol 75, 317–326.[CrossRef]
    [Google Scholar]
  55. Szekely, L., Selivanova, G., Magnusson, K. P., Klein, G. & Wiman, K. G. ( 1993; ). EBNA-5, an Epstein–Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci U S A 90, 5455–5459.[CrossRef]
    [Google Scholar]
  56. Szekely, L., Jiang, W. Q., Pokrovskaja, K., Wiman, K. G., Klein, G. & Ringertz, N. ( 1995; ). Reversible nucleolar translocation of Epstein–Barr virus-encoded EBNA-5 and hsp70 proteins after exposure to heat shock or cell density congestion. J Gen Virol 76, 2423–2432.[CrossRef]
    [Google Scholar]
  57. Szekely, L., Pokrovskaja, K., Jiang, W. Q., de The, H., Ringertz, N. & Klein, G. ( 1996; ). The Epstein–Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies. J Virol 70, 2562–2568.
    [Google Scholar]
  58. Tanaka, M., Yokoyama, A., Igarashi, M., Matsuda, G., Kato, K., Kanamori, M., Hirai, K., Kawaguchi, Y. & Yamanashi, Y. ( 2002; ). Conserved region CR2 of Epstein–Barr virus nuclear antigen leader protein is a multifunctional domain that mediates self-association as well as nuclear localization and nuclear matrix association. J Virol 76, 1025–1032.[CrossRef]
    [Google Scholar]
  59. Tomkinson, B., Robertson, E. & Kieff, E. ( 1993; ). Epstein–Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol 67, 2014–2025.
    [Google Scholar]
  60. van den Heuvel, S. & Harlow, E. ( 1993; ). Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050–2054.[CrossRef]
    [Google Scholar]
  61. van Zeijl, M., Fairhurst, J., Baum, E. Z., Sun, L. & Jones, T. R. ( 1997; ). The human cytomegalovirus UL97 protein is phosphorylated and a component of virions. Virology 231, 72–80.[CrossRef]
    [Google Scholar]
  62. Yokoyama, A., Kawaguchi, Y., Kitabayashi, I., Ohki, M. & Hirai, K. ( 2001a; ). The conserved domain CR2 of Epstein–Barr virus nuclear antigen leader protein is responsible not only for nuclear matrix association but also for nuclear localization. Virology 279, 401–413.[CrossRef]
    [Google Scholar]
  63. Yokoyama, A., Tanaka, M., Matsuda, G. & 8 other authors ( 2001b; ). Identification of major phosphorylation sites of Epstein–Barr virus nuclear antigen leader protein (EBNA-LP): ability of EBNA-LP to induce latent membrane protein 1 cooperatively with EBNA-2 is regulated by phosphorylation. J Virol 75, 5119–5128.[CrossRef]
    [Google Scholar]
  64. zur Hausen, H., O'Neill, F. J., Freese, U. K. & Hecker, E. ( 1978; ). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272, 373–375.[CrossRef]
    [Google Scholar]
  65. zur Hausen, H., Bornkamm, G. W., Schmidt, R. & Hecker, E. ( 1979; ). Tumor initiators and promoters in the induction of Epstein–Barr virus. Proc Natl Acad Sci U S A 76, 782–785.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19454-0
Loading
/content/journal/jgv/10.1099/vir.0.19454-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error