1887

Abstract

Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is a phosphoprotein suggested to play important roles in EBV-induced immortalization. Earlier studies have shown that the major site of phosphorylation of EBNA-LP by cellular kinase(s) is a serine residue at position 35 (Ser-35) and that the phosphorylation of Ser-35 is critical for regulation of the coactivator function of EBNA-LP ( Yokoyama ., , 5119–5128, 2001 ). In the present study, we have attempted to identify protein kinase(s) responsible for the phosphorylation of EBNA-LP at Ser-35. A purified chimeric protein consisting of glutathione -transferase (GST) fused to a domain of EBNA-LP containing Ser-35 was found to be specifically phosphorylated by purified cdc2 , while GST fused to a mutated domain of EBNA-LP in which Ser-35 was replaced with alanine was not. In addition, overexpression of cdc2 in mammalian cells caused a significant increase in the phosphorylation of EBNA-LP, while this increased phosphorylation was eliminated if Ser-35 of EBNA-LP was replaced with alanine. These results indicate that the cellular protein kinase cdc2 mediates the phosphorylation of EBNA-LP at Ser-35. Recently, we reported that cdc2 and conserved protein kinases encoded by herpesviruses phosphorylate the same amino acid residue of target proteins ( Kawaguchi ., , 2359–2368, 2003 ). Consistent with this, the EBV-encoded conserved protein kinase BGLF4 specifically mediated the phosphorylation of EBNA-LP at Ser-35. These results indicate that the coactivator function of EBNA-LP can be regulated by the activity of these cellular and viral protein kinases.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19454-0
2003-12-01
2021-10-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/12/vir843381.html?itemId=/content/journal/jgv/10.1099/vir.0.19454-0&mimeType=html&fmt=ahah

References

  1. Alfieri C., Birkenbach M., Kieff E. 1991; Early events in Epstein–Barr virus infection of human B lymphocytes. Virology 181:595–608
    [Google Scholar]
  2. Allan G. J., Inman G. J., Parker B. D., Rowe D. T., Farrell P. J. 1992; Cell growth effects of Epstein–Barr virus leader protein. J Gen Virol 73:1547–1551
    [Google Scholar]
  3. Bandobashi K., Maeda A., Teramoto N., Nagy N., Szekely L., Taguchi H., Miyoshi I., Klein G., Klein E. 2001; Intranuclear localization of the transcription coadaptor CBP/p300 and the transcription factor RBP-Jk in relation to EBNA-2 and -5 in B lymphocytes. Virology 288:275–282
    [Google Scholar]
  4. Ben-Sasson S. A., Klein G. 1981; Activation of the Epstein–Barr virus genome by 5-aza-cytidine in latently infected human lymphoid lines. Int J Cancer 28:131–135
    [Google Scholar]
  5. Chee M. S., Lawrence G. L., Barrell B. G. 1989; Alpha-, beta- and gammaherpesviruses encode a putative phosphotransferase. J Gen Virol 70:1151–1160
    [Google Scholar]
  6. Chen M. R., Chang S. J., Huang H., Chen J. Y. 2000; A protein kinase activity associated with Epstein–Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro. J Virol 74:3093–3104
    [Google Scholar]
  7. Chung T. D., Wymer J. P., Smith C. C., Kulka M., Aurelian L. 1989; Protein kinase activity associated with the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). J Virol 63:3389–3398
    [Google Scholar]
  8. Cohen J. I., Wang F., Mannick J., Kieff E. 1989; Epstein–Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci U S A 86:9558–9562
    [Google Scholar]
  9. Cunningham C., Davison A. J., Dolan A., Frame M. C., McGeoch D. J., Meredith D. M., Moss H. W., Orr A. C. 1992; The UL13 virion protein of herpes simplex virus type 1 is phosphorylated by a novel virus-induced protein kinase. J Gen Virol 73:303–311
    [Google Scholar]
  10. de Wind N., Domen J., Berns A. 1992; Herpesviruses encode an unusual protein-serine/threonine kinase which is nonessential for growth in cultured cells. J Virol 66:5200–5209
    [Google Scholar]
  11. Gershburg E., Pagano J. S. 2002; Phosphorylation of the Epstein–Barr virus (EBV) DNA polymerase processivity factor EA-D by the EBV-encoded protein kinase and effects of the l-riboside benzimidazole 1263W94. J Virol 76:998–1003
    [Google Scholar]
  12. Hammerschmidt W., Sugden B. 1989; Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature 340:393–397
    [Google Scholar]
  13. Han I., Harada S., Weaver D., Xue Y., Lane W., Orstavik S., Skalhegg B., Kieff E. 2001; EBNA-LP associates with cellular proteins including DNA-PK and HA95. J Virol 75:2475–2481
    [Google Scholar]
  14. Han I., Xue Y., Harada S., Orstavik S., Skalhegg B., Kieff E. 2002; Protein kinase A associates with HA95 and affects transcriptional coactivation by Epstein–Barr virus nuclear proteins. Mol Cell Biol 22:2136–2146
    [Google Scholar]
  15. Hanks S. K., Quinn A. M., Hunter T. 1988; The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52
    [Google Scholar]
  16. Harada S., Kieff E. 1997; Epstein–Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J Virol 71:6611–6618
    [Google Scholar]
  17. He Z., He Y. S., Kim Y., Chu L., Ohmstede C., Biron K. K., Coen D. M. 1997; The human cytomegalovirus UL97 protein is a protein kinase that autophosphorylates on serines and threonines. J Virol 71:405–411
    [Google Scholar]
  18. Hudewentz J., Bornkamm G. W., zur Hausen H. 1980; Effect of the diterpene ester TPA on Epstein–Barr virus antigen- and DNA synthesis in producer and nonproducer cell lines. Virology 100:175–178
    [Google Scholar]
  19. Igarashi M., Kawaguchi Y., Hirai K., Mizuno F. 2003; Physical interaction of Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) with human oestrogen-related receptor 1 (hERR1): hERR1 interacts with a conserved domain of EBNA-LP that is critical for EBV-induced B-cell immortalization. J Gen Virol 84:319–327
    [Google Scholar]
  20. Jiang W. Q., Szekely L., Wendel-Hansen V., Ringertz N., Klein G., Rosen A. 1991; Co-localization of the retinoblastoma protein and the Epstein–Barr virus-encoded nuclear antigen EBNA-5. Exp Cell Res 197:314–318
    [Google Scholar]
  21. Kato K., Kawaguchi Y., Tanaka M. 10 other authors 2001; Epstein–Barr virus-encoded protein kinase BGLF4 mediates hyperphosphorylation of cellular elongation factor 1δ (EF-1δ): EF-1δ is universally modified by conserved protein kinases of herpesviruses in mammalian cells. J Gen Virol 82:1457–1463
    [Google Scholar]
  22. Kawaguchi Y., Bruni R., Roizman B. 1997a; Interaction of herpes simplex virus 1 alpha regulatory protein ICP0 with elongation factor 1delta: ICP0 affects translational machinery. J Virol 71:1019–1024
    [Google Scholar]
  23. Kawaguchi Y., Van Sant C., Roizman B. 1997b; Herpes simplex virus 1 alpha regulatory protein ICP0 interacts with and stabilizes the cell cycle regulator cyclin D3. J Virol 71:7328–7336
    [Google Scholar]
  24. Kawaguchi Y., Van Sant C., Roizman B. 1998; Eukaryotic elongation factor 1δ is hyperphosphorylated by the protein kinase encoded by the U(L)13 gene of herpes simplex virus 1. J Virol 72:1731–1736
    [Google Scholar]
  25. Kawaguchi Y., Matsumura T., Roizman B., Hirai K. 1999; Cellular elongation factor 1δ is modified in cells infected with representative alpha-, beta-, or gammaherpesviruses. J Virol 73:4456–4460
    [Google Scholar]
  26. Kawaguchi Y., Nakajima K., Igarashi M. 8 other authors 2000; Interaction of Epstein–Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP. J Virol 74:10104–10111
    [Google Scholar]
  27. Kawaguchi Y., Tanaka M., Yokoymama A., Matsuda G., Kato K., Kagawa H., Hirai K., Roizman B. 2001; Herpes simplex virus 1 alpha regulatory protein ICP0 functionally interacts with cellular transcription factor BMAL1. Proc Natl Acad Sci U S A 98:1877–1882
    [Google Scholar]
  28. Kawaguchi Y., Kato K., Tanaka M., Kanamori M., Nishiyama Y., Yamanashi Y. 2003; Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1δ. J Virol 77:2359–2368
    [Google Scholar]
  29. Kaye K. M., Izumi K. M., Kieff E. 1993; Epstein–Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A 90:9150–9154
    [Google Scholar]
  30. Kenyon T. K., Lynch J., Hay J., Ruyechan W., Grose C. 2001; Varicella-zoster virus ORF47 protein serine kinase: characterization of a cloned, biologically active phosphotransferase and two viral substrates, ORF62 and ORF63. J Virol 75:8854–8858
    [Google Scholar]
  31. Kieff E., Rickinson A. B. 2001; Epstein–Barr Virus and its replication. In Fields Virology , 4th edn. pp  2511–2573 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott-Williams & Wilkins;
    [Google Scholar]
  32. Kitay M. K., Rowe D. T. 1996a; Cell cycle stage-specific phosphorylation of the Epstein–Barr virus immortalization protein EBNA-LP. J Virol 70:7885–7893
    [Google Scholar]
  33. Kitay M. K., Rowe D. T. 1996b; Protein–protein interactions between Epstein–Barr virus nuclear antigen-LP and cellular gene products: binding of 70-kilodalton heat shock proteins. Virology 220:91–99
    [Google Scholar]
  34. Litchfield D. W., Lozeman F. J., Cicirelli M. F., Harrylock M., Ericsson L. H., Piening C. J., Krebs E. G. 1991; Phosphorylation of the beta subunit of casein kinase II in human A431 cells. Identification of the autophosphorylation site and a site phosphorylated by p34cdc2. J Biol Chem 266:20380–20389
    [Google Scholar]
  35. Luka J., Kallin B., Klein G. 1979; Induction of the Epstein–Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94:228–231
    [Google Scholar]
  36. McCann E. M., Kelly G. L., Rickinson A. B., Bell A. I. 2001; Genetic analysis of the Epstein–Barr virus-coded leader protein EBNA-LP as a co-activator of EBNA2 function. J Gen Virol 82:3067–3079
    [Google Scholar]
  37. McGeoch D. J., Davison A. J. 1986; Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses. Nucleic Acids Res 14:1765–1777
    [Google Scholar]
  38. Mannick J. B., Cohen J. I., Birkenbach M., Marchini A., Kieff E. 1991; The Epstein–Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J Virol 65:6826–6837
    [Google Scholar]
  39. Mannick J. B., Tong X., Hemnes A., Kieff E. 1995; The Epstein–Barr virus nuclear antigen leader protein associates with hsp72/hsc73. J Virol 69:8169–8172
    [Google Scholar]
  40. Marchini A., Cohen J. I., Wang F., Kieff E. 1992; A selectable marker allows investigation of a nontransforming Epstein–Barr virus mutant. J Virol 66:3214–3219
    [Google Scholar]
  41. Marin O., Meggio F., Draetta G., Pinna L. A. 1992; The consensus sequences for cdc2 kinase and for casein kinase-2 are mutually incompatible. A study with peptides derived from the beta-subunit of casein kinase-2. FEBS Lett 301:111–114
    [Google Scholar]
  42. Matsuda G., Nakajima K., Kawaguchi Y., Yamanashi Y., Hirai K. 2003; Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) forms complexes with a cellular anti-apoptosis protein Bcl-2 or its EBV counterpart BHRF1 through HS1-associated protein X-1. Microbiol Immunol 47:91–99
    [Google Scholar]
  43. Nitsche F., Bell A., Rickinson A. 1997; Epstein–Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J Virol 71:6619–6628
    [Google Scholar]
  44. Overton H. A., McMillan D. J., Klavinskis L. S., Hope L., Ritchie A. J., Wong-kai-in P. 1992; Herpes simplex virus type 1 gene UL13 encodes a phosphoprotein that is a component of the virion. Virology 190:184–192
    [Google Scholar]
  45. Peng R., Gordadze A. V., Fuentes Panana E. M., Wang F., Zong J., Hayward G. S., Tan J., Ling P. D. 2000a; Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol 74:379–389
    [Google Scholar]
  46. Peng R., Tan J., Ling P. D. 2000b; Conserved regions in the Epstein–Barr virus leader protein define distinct domains required for nuclear localization and transcriptional cooperation with EBNA2. J Virol 74:9953–9963
    [Google Scholar]
  47. Petti L., Sample C., Kieff E. 1990; Subnuclear localization and phosphorylation of Epstein–Barr virus latent infection nuclear proteins. Virology 176:563–574
    [Google Scholar]
  48. Ragona G., Ernberg I., Klein G. 1980; Induction and biological characterization of the Epstein–Barr virus (EBV) carried by the Jijoye lymphoma line. Virology 101:553–557
    [Google Scholar]
  49. Rickinson A. B., Kieff E. 2001; Epstein–Barr virus. In Fields Virology , 4th edn. pp  2575–2627 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott-Williams & Wilkins;
    [Google Scholar]
  50. Saemundsen A. K., Kallin B., Klein G. 1980; Effect of n-butyrate on cellular and viral DNA synthesis in cells latently infected with Epstein–Barr virus. Virology 107:557–561
    [Google Scholar]
  51. Sinclair A. J., Palmero I., Peters G., Farrell P. J. 1994; EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein–Barr virus. EMBO J 13:3321–3328
    [Google Scholar]
  52. Smith R. F., Smith T. F. 1989; Identification of new protein kinase-related genes in three herpesviruses, herpes simplex virus, varicella-zoster virus, and Epstein–Barr virus. J Virol 63:450–455
    [Google Scholar]
  53. Smits V. A., Medema R. H. 2001; Checking out the G2/M transition. Biochim Biophys Acta 1519:1–12
    [Google Scholar]
  54. Stevenson D., Colman K. L., Davison A. J. 1994; Characterization of the putative protein kinases specified by varicella-zoster virus genes 47 and 66. J Gen Virol 75:317–326
    [Google Scholar]
  55. Szekely L., Selivanova G., Magnusson K. P., Klein G., Wiman K. G. 1993; EBNA-5, an Epstein–Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci U S A 90:5455–5459
    [Google Scholar]
  56. Szekely L., Jiang W. Q., Pokrovskaja K., Wiman K. G., Klein G., Ringertz N. 1995; Reversible nucleolar translocation of Epstein–Barr virus-encoded EBNA-5 and hsp70 proteins after exposure to heat shock or cell density congestion. J Gen Virol 76:2423–2432
    [Google Scholar]
  57. Szekely L., Pokrovskaja K., Jiang W. Q., de The H., Ringertz N., Klein G. 1996; The Epstein–Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies. J Virol 70:2562–2568
    [Google Scholar]
  58. Tanaka M., Yokoyama A., Igarashi M., Matsuda G., Kato K., Kanamori M., Hirai K., Kawaguchi Y., Yamanashi Y. 2002; Conserved region CR2 of Epstein–Barr virus nuclear antigen leader protein is a multifunctional domain that mediates self-association as well as nuclear localization and nuclear matrix association. J Virol 76:1025–1032
    [Google Scholar]
  59. Tomkinson B., Robertson E., Kieff E. 1993; Epstein–Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol 67:2014–2025
    [Google Scholar]
  60. van den Heuvel S., Harlow E. 1993; Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262:2050–2054
    [Google Scholar]
  61. van Zeijl M., Fairhurst J., Baum E. Z., Sun L., Jones T. R. 1997; The human cytomegalovirus UL97 protein is phosphorylated and a component of virions. Virology 231:72–80
    [Google Scholar]
  62. Yokoyama A., Kawaguchi Y., Kitabayashi I., Ohki M., Hirai K. 2001a; The conserved domain CR2 of Epstein–Barr virus nuclear antigen leader protein is responsible not only for nuclear matrix association but also for nuclear localization. Virology 279:401–413
    [Google Scholar]
  63. Yokoyama A., Tanaka M., Matsuda G. & 8 other authors (2001b). Identification of major phosphorylation sites of Epstein–Barr virus nuclear antigen leader protein (EBNA-LP): ability of EBNA-LP to induce latent membrane protein 1 cooperatively with EBNA-2 is regulated by phosphorylation. J Virol 75:5119–5128
    [Google Scholar]
  64. zur Hausen H., O'Neill F. J., Freese U. K., Hecker E. 1978; Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272:373–375
    [Google Scholar]
  65. zur Hausen H., Bornkamm G. W., Schmidt R., Hecker E. 1979; Tumor initiators and promoters in the induction of Epstein–Barr virus. Proc Natl Acad Sci U S A 76:782–785
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19454-0
Loading
/content/journal/jgv/10.1099/vir.0.19454-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error