1887

Abstract

The existence and extent of disorder within the replicative complex (N, P and the polymerase, L) of were investigated, drawing on the discovery that the N-terminal moiety of the phosphoprotein (P) and the C-terminal moiety of the nucleoprotein (N) of measles virus are intrinsically unstructured. We show that intrinsic disorder is a widespread property within N and P, using a combination of different computational approaches relying on different physico-chemical concepts. Notably, experimental support that has often gone unnoticed for most of the predictions has been found in the literature. Identification of disordered regions allows the unveiling of a common organization in all P, which are composed of six modules defined on the basis of structure or sequence conservation. The possible functional significance of intrinsic disorder is discussed in the light of experimental data, which show that unstructured regions of P and N are involved in numerous interactions with several protein and protein–RNA partners. This study provides a contribution to the rather poorly investigated field of intrinsically disordered proteins and helps in targeting protein domains for structural studies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19451-0
2003-12-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/12/vir843239.html?itemId=/content/journal/jgv/10.1099/vir.0.19451-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Bairoch A., Apweiler R.. 2000; The swiss-prot protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res28:45–48
    [Google Scholar]
  3. Bankamp B., Horikami S. M., Thompson P. D., Huber M., Billeter M., Moyer S. A.. 1996; Domains of the measles virus N protein required for binding to P protein and self-assembly. Virology216:272–277
    [Google Scholar]
  4. Barr J., Chambers P., Pringle C. R., Easton A. J.. 1991; Sequence of the major nucleocapsid protein gene of pneumonia virus of mice: sequence comparisons suggest structural homology between nucleocapsid proteins of pneumoviruses, paramyxoviruses, rhabdoviruses and filoviruses. J Gen Virol72:677–685
    [Google Scholar]
  5. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Rapp B. A., Wheeler D. L.. 2002; GenBank. Nucleic Acids Res30:17–20
    [Google Scholar]
  6. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E.. 2000; The protein data bank. Nucleic Acids Res28:235–242
    [Google Scholar]
  7. Brown C. J., Takayama S., Campen A. M., Vise P., Marshall T. W., Oldfield C. J., Williams C. J., Dunker A. K.. 2002; Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol55:104–110
    [Google Scholar]
  8. Buchholz C. J., Retzler C., Homann H. E., Neubert W. J.. 1994; The carboxy-terminal domain of Sendai virus nucleocapsid protein is involved in complex formation between phosphoprotein and nucleocapsid-like particles. Virology204:770–776
    [Google Scholar]
  9. Byrappa S., Gupta K. C.. 1999; Human parainfluenza virus type 1 phosphoprotein is constitutively phosphorylated at Ser-120 and Ser-184. J Gen Virol80:1199–1209
    [Google Scholar]
  10. Byrappa S., Pan Y. B., Gupta K. C.. 1996; Sendai virus P protein is constitutively phosphorylated at serine249: high phosphorylation potential of the P protein. Virology216:228–234
    [Google Scholar]
  11. Callebaut I., Labesse G., Durand P., Poupon A., Canard L., Chomilier J., Henrissat B., Mornon J. P.. 1997; Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell Mol Life Sci53:621–645
    [Google Scholar]
  12. Chinchar V. G., Portner A.. 1981a; Functions of Sendai virus nucleocapsid polypeptides: enzymatic activities in nucleocapsids following cleavage of polypeptide P by Staphylococcus aureus protease V8. Virology109:59–71
    [Google Scholar]
  13. Chinchar V. G., Portner A.. 1981b; Inhibition of RNA synthesis following proteolytic cleavage of Newcastle disease virus P protein. Virology115:192–202
    [Google Scholar]
  14. Curran J., Kolakofsky D.. 1999; Replication of paramyxoviruses. Adv Virus Res54:403–422
    [Google Scholar]
  15. Curran J., Homann H., Buchholz C., Rochat S., Neubert W., Kolakofsky D.. 1993; The hypervariable C-terminal tail of the Sendai paramyxovirus nucleocapsid protein is required for template function but not for RNA encapsidation. J Virol67:4358–4364
    [Google Scholar]
  16. Curran J., Pelet T., Kolakofsky D.. 1994; An acidic activation-like domain of the Sendai virus P protein is required for RNA synthesis and encapsidation. Virology202:875–884
    [Google Scholar]
  17. Curran J., Boeck R., Lin-Marq N., Lupas A., Kolakofsky D.. 1995a; Paramyxovirus phosphoproteins form homotrimers as determined by an epitope dilution assay, via predicted coiled coils. Virology214:139–149
    [Google Scholar]
  18. Curran J., Marq J. B., Kolakofsky D.. 1995b; An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication. J Virol69:849–855
    [Google Scholar]
  19. Das T., Schuster A., Schneider-Schaulies S., Banerjee A. K.. 1995; Involvement of cellular casein kinase II in the phosphorylation of measles virus P protein: identification of phosphorylation sites. Virology211:218–226
    [Google Scholar]
  20. Deshpande K. L., Portner A.. 1985; Monoclonal antibodies to the P protein of Sendai virus define its structure and role in transcription. Virology140:125–134
    [Google Scholar]
  21. Dunker A. K., Obradovic Z.. 2001; The protein trinity: linking function and disorder. Nat Biotechnol19:805–806
    [Google Scholar]
  22. Dunker A. K., Garner E., Guilliot S., Romero P., Albrecht K., Hart J., Obradovic Z., Kissinger C., Villafranca J. E.. 1998; Protein disorder and the evolution of molecular recognition: theory, predictions and observations Pac Symp Biocomput;473–484
    [Google Scholar]
  23. Dunker A. K., Lawson J. D., Brown C. J.. 17 other authors 2001; Intrinsically disordered protein. J Mol Graph Model19:26–59
    [Google Scholar]
  24. Dunker A. K., Brown C. J., Lawson J. D., Iakoucheva L. M., Obradovic Z.. 2002a; Intrinsic disorder and protein function. Biochemistry41:6573–6582
    [Google Scholar]
  25. Dunker A. K., Brown C. J., Obradovic Z.. 2002b; Identification and functions of usefully disordered proteins. Adv Protein Chem62:25–49
    [Google Scholar]
  26. Duprex W. P., Collins F. M., Rima B. K.. 2002; Modulating the function of the measles virus RNA-dependent RNA polymerase by insertion of green fluorescent protein into the open reading frame. J Virol76:7322–7328
    [Google Scholar]
  27. Dyson H. J., Wright P. E.. 2002; Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol12:54–60
    [Google Scholar]
  28. Ferron F., Longhi S., Henrissat B., Canard B.. 2002; Viral RNA-polymerases: a predicted 2′- O -ribose methyltransferase domain shared by all Mononegavirales . Trends Biochem Sci27:222–224
    [Google Scholar]
  29. Galtier N., Gouy M., Gautier C.. 1996; seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci12:543–548
    [Google Scholar]
  30. Giraudon P., Jacquier M. F., Wild T. F.. 1988; Antigenic analysis of African measles virus field isolates: identification and localisation of one conserved and two variable epitope sites on the NP protein. Virus Res10:137–152
    [Google Scholar]
  31. Gombart A. F., Hirano A., Wong T. C.. 1995; Nucleoprotein phosphorylated on both serine and threonine is preferentially assembled into the nucleocapsids of measles virus. Virus Res37:63–73
    [Google Scholar]
  32. Gotoh B., Komatsu T., Takeuchi K., Yokoo J.. 2002; Paramyxovirus strategies for evading the interferon response. Rev Med Virol12:337–357
    [Google Scholar]
  33. Gouet P., Courcelle E., Stuart D. I., Metoz F.. 1999; ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics15:305–308
    [Google Scholar]
  34. Harty R. N., Palese P.. 1995; Measles virus phosphoprotein (P) requires the NH2- and COOH-terminal domains for interactions with the nucleoprotein (N) but only the COOH terminus for interactions with itself. J Gen Virol76:2863–2867
    [Google Scholar]
  35. Heggeness M. H., Scheid A., Choppin P. W.. 1981; The relationship of conformational changes in the Sendai virus nucleocapsid to proteolytic cleavage of the NP polypeptide. Virology114:555–562
    [Google Scholar]
  36. Holmes D. E., Moyer S. A.. 2002; The phosphoprotein (P) binding site resides in the N terminus of the L polymerase subunit of sendai virus. J Virol76:3078–3083
    [Google Scholar]
  37. Hsu C. H., Kingsbury D. W.. 1982; Topography of phosphate residues in Sendai virus proteins. Virology120:225–234
    [Google Scholar]
  38. Johansson K., Bourhis J. M., Campanacci V., Cambillau C., Canard B., Longhi S.. 2003; Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein. J Biol Chem (in press)
    [Google Scholar]
  39. Jonscher K. R., Yates J. R. III. 1997; Matrix-assisted laser desorption ionization/quadrupole ion trap mass spectrometry of peptides. Application to the localization of phosphorylation sites on the P protein from Sendai virus. J Biol Chem272:1735–1741
    [Google Scholar]
  40. Karlin D., Longhi S., Canard B.. 2002a; Substitution of two residues in the measles virus nucleoprotein results in an impaired self-association. Virology302:420–432
    [Google Scholar]
  41. Karlin D., Longhi S., Receveur V., Canard B.. 2002b; The N-terminal domain of the phosphoprotein of morbilliviruses belongs to the natively unfolded class of proteins. Virology296:251–262
    [Google Scholar]
  42. Lamb R. A., Kolakofsky D.. 2001; Paramyxoviridae : the viruses and their replication. In Fields Virology , 4th edn. pp 1305–1340 Edited by Fields B. N., Knipe D. M., Howley P. M.. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  43. Leulliot N., Varani G.. 2001; Current topics in RNA–protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry40:7947–7956
    [Google Scholar]
  44. Li X., Romero P., Rani M., Dunker A. K., Obradovic Z.. 1999; Predicting protein disorder for N-, C- and internal regions. Genome Inform Ser Workshop Genome Inform10:30–40
    [Google Scholar]
  45. Lin G. Y., Paterson R. G., Lamb R. A.. 1997; The RNA binding region of the paramyxovirus SV5 V and P proteins. Virology238:460–469
    [Google Scholar]
  46. Liston P., DiFlumeri C., Briedis D. J.. 1995; Protein interactions entered into by the measles virus P, V, and C proteins. Virus Res38:241–259
    [Google Scholar]
  47. Liu J., Tan H., Rost B.. 2002; Loopy proteins appear conserved in evolution. J Mol Biol322:53–64
    [Google Scholar]
  48. Longhi S., Receveur-Brechot V., Karlin D., Johansson K., Darbon H., Bhella D., Yeo R., Finet S., Canard B.. 2003; The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem278:18638–18648
    [Google Scholar]
  49. Malur A. G., Choudhary S. K., De B. P., Banerjee A. K.. 2002; Role of a highly conserved NH2-terminal domain of the human parainfluenza virus type 3 RNA polymerase. J Virol76:8101–8109
    [Google Scholar]
  50. Marion D., Tarbouriech N., Ruigrok R. W., Burmeister W. P., Blanchard L.. 2001; Assignment of the 1H, 15N and 13C resonances of the nucleocapsid-binding domain of the Sendai virus phosphoprotein. J Biomol NMR21:75–76
    [Google Scholar]
  51. McGuffin L. J., Bryson K., Jones D. T.. 2000; The psipred protein structure prediction server. Bioinformatics16:404–405
    [Google Scholar]
  52. McIlhatton M. A., Curran M. D., Rima B. K.. 1997; Nucleotide sequence analysis of the large (L) genes of phocine distemper virus and canine distemper virus (corrected sequence. J Gen Virol78:571–576
    [Google Scholar]
  53. Mogridge J., Legault P., Li J., Van Oene M. D., Kay L. E., Greenblatt J.. 1998; Independent ligand-induced folding of the RNA-binding domain and two functionally distinct antitermination regions in the phage lambda N protein. Mol Cell1:265–275
    [Google Scholar]
  54. Nishio M., Tsurudome M., Kawano M., Watanabe N., Ohgimoto S., Ito M., Komada H., Ito Y.. 1996; Interaction between nucleocapsid protein (NP) and phosphoprotein (P) of human parainfluenza virus type 2: one of the two NP binding sites on P is essential for granule formation. J Gen Virol77:2457–2463
    [Google Scholar]
  55. Nishio M., Tsurudome M., Ito M., Kawano M., Kusagawa S., Komada H., Ito Y.. 1999; Mapping of domains on the human parainfluenza virus type 2 nucleocapsid protein (NP) required for NP–phosphoprotein or NP–NP interaction. J Gen Virol80:2017–2022
    [Google Scholar]
  56. Parks G. D.. 1994; Mapping of a region of the paramyxovirus L protein required for the formation of a stable complex with the viral phosphoprotein P. J Virol68:4862–4872
    [Google Scholar]
  57. Paterson R. G., Leser G. P., Shaughnessy M. A., Lamb R. A.. 1995; The paramyxovirus SV5 V protein binds two atoms of zinc and is a structural component of virions. Virology208:121–131
    [Google Scholar]
  58. Poch O., Blumberg B. M., Bougueleret L., Tordo N.. 1990; Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol71:1153–1162
    [Google Scholar]
  59. Precious B., Young D. F., Bermingham A., Fearns R., Ryan M., Randall R. E.. 1995; Inducible expression of the P, V, and NP genes of the paramyxovirus simian virus 5 in cell lines and an examination of NP–P and NP–V interactions. J Virol69:8001–8010
    [Google Scholar]
  60. Romero P., Obradovic Z., Kissinger C. R., Villafranca J. E., Dunker A. K.. 1997; Identifying disordered regions in proteins from amino acid sequences. In Proceedings of the IEEE International Conference on Neural Networks vol: 190–95
    [Google Scholar]
  61. Romero P., Obradovic Z., Li X., Garner E. C., Brown C. J., Dunker A. K.. 2001; Sequence complexity of disordered proteins. Proteins42:38–48
    [Google Scholar]
  62. Rost B.. 1996; phd: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol266:525–539
    [Google Scholar]
  63. Ryan K. W., Morgan E. M., Portner A.. 1991; Two noncontiguous regions of Sendai virus P protein combine to form a single nucleocapsid binding domain. Virology180:126–134
    [Google Scholar]
  64. Sanchez A., Khan A. S., Zaki S. R., Nabel G. J., Ksiazek T. G., Peters C. J.. 2001; Filoviridae : Marburg and Ebola viruses. In Fields Virology , 4th edn. pp 1279–1304 Edited by Fields B. N., Knipe D. M., Howley P. M.. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  65. Schoehn G., Iseni F., Mavrakis M., Blondel D., Ruigrok R. W.. 2001; Structure of recombinant rabies virus nucleoprotein–RNA complex and identification of the phosphoprotein binding site. J Virol75:490–498
    [Google Scholar]
  66. Shaji D., Shaila M. S.. 1999; Domains of Rinderpest virus phosphoprotein involved in interaction with itself and the nucleocapsid protein. Virology258:415–424
    [Google Scholar]
  67. Smallwood S., Ryan K. W., Moyer S. A.. 1994; Deletion analysis defines a carboxyl-proximal region of Sendai virus P protein that binds to the polymerase L protein. Virology202:154–163
    [Google Scholar]
  68. Svenda M., Berg M., Moreno-Lopez J., Linne T.. 1997; Analysis of the large (L) protein gene of the porcine rubulavirus LPMV: identification of possible functional domains. Virus Res48:57–70
    [Google Scholar]
  69. Tarbouriech N., Curran J., Ebel C., Ruigrok R. W., Burmeister W. P.. 2000a; On the domain structure and the polymerization state of the sendai virus P protein. Virology266:99–109
    [Google Scholar]
  70. Tarbouriech N., Curran J., Ruigrok R. W., Burmeister W. P.. 2000b; Tetrameric coiled coil domain of Sendai virus phosphoprotein. Nat Struct Biol7:777–781
    [Google Scholar]
  71. tenOever B. R., Servant M. J., Grandvaux N., Lin R., Hiscott J.. 2002; Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J Virol76:3659–3669 erratum 76, 6413
    [Google Scholar]
  72. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  73. Tober C., Seufert M., Schneider H., Billeter M. A., Johnston I. C., Niewiesk S., ter Meulen V., Schneider-Schaulies S.. 1998; Expression of measles virus V protein is associated with pathogenicity and control of viral RNA synthesis. J Virol72:8124–8132
    [Google Scholar]
  74. Tompa P.. 2002; Intrinsically unstructured proteins. Trends Biochem Sci27:527–533
    [Google Scholar]
  75. Uversky V. N.. 2002a; Natively unfolded proteins: a point where biology waits for physics. Protein Sci11:739–756
    [Google Scholar]
  76. Uversky V. N.. 2002b; What does it mean to be natively unfolded?. Eur J Biochem269:2–12
    [Google Scholar]
  77. Uversky V. N., Gillespie J. R., Fink A. L.. 2000; Why are ‘natively unfolded’ proteins unstructured under physiologic conditions?. Proteins41:415–427
    [Google Scholar]
  78. Vidal S., Curran J., Orvell C., Kolakofsky D.. 1988; Mapping of monoclonal antibodies to the Sendai virus P protein and the location of its phosphates. J Virol62:2200–2203
    [Google Scholar]
  79. Watanabe N., Kawano M., Tsurudome M., Kusagawa S., Nishio M., Komada H., Shima T., Ito Y.. 1996; Identification of the sequences responsible for nuclear targeting of the V protein of human parainfluenza virus type 2. J Gen Virol77:327–338
    [Google Scholar]
  80. Williams R. M., Obradovi Z., Mathura V., Braun W., Garner E. C., Young J., Takayama S., Brown C. J., Dunker A. K.. 2001; The protein non-folding problem: amino acid determinants of intrinsic order and disorder Pac Symp Biocomput;89–100
    [Google Scholar]
  81. Wootton J. C.. 1994; Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem18:269–285
    [Google Scholar]
  82. Wright P. E., Dyson H. J.. 1999; Intrinsically unstructured proteins: re-assessing the protein structure–function paradigm. J Mol Biol293:321–331
    [Google Scholar]
  83. Zetina C. R.. 2001; A conserved helix-unfolding motif in the naturally unfolded proteins. Proteins44:479–483
    [Google Scholar]
  84. Zhang X., Glendening C., Linke H., Parks C. L., Brooks C., Udem S. A., Oglesbee M.. 2002; Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein. J Virol76:8737–8746
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19451-0
Loading
/content/journal/jgv/10.1099/vir.0.19451-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error