1887

Abstract

The herpesvirus saimiri (HVS) ORF73 gene product shares limited homology with the ORF73 protein of Kaposi's sarcoma-associated herpesvirus (KSHV). ORF73 is expressed in an model of HVS latency, where the genome persists as a non-integrated circular episome. This suggests it may have a similar role to KSHV ORF73 in episomal maintenance, by tethering viral genomes to host-cell chromosomes. Here, the association of ORF73 with host mitotic chromosomes is described. Deletion analysis demonstrates that the distal 123 aa of the ORF73 protein are required for mitotic chromosomal localization and for self-association. Moreover, deletion of the extreme C terminus disrupts both self-association and host mitotic chromosome colocalization. This suggests that HVS ORF73 has a similar role to KSHV ORF73 in episomal maintenance and that association of ORF73 to host mitotic chromosomes is dependent on its ability to form multimers.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19437-0
2004-01-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/1/vir850147.html?itemId=/content/journal/jgv/10.1099/vir.0.19437-0&mimeType=html&fmt=ahah

References

  1. Albrecht, J., Nicholas, J., Biller, D. & 7 other authors ( 1992; ). Primary structure of the herpesvirus saimiri genome. J Virol 66, 5047–5058.
    [Google Scholar]
  2. Ballestas, M. E. & Kaye, K. M. ( 2001; ). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J Virol 75, 3250–3258.[CrossRef]
    [Google Scholar]
  3. Ballestas, M. E., Chatis, P. A. & Kaye, K. M. ( 1999; ). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284, 641–644.[CrossRef]
    [Google Scholar]
  4. Chang, Y., Moore, P. S., Talbot, S. J., Boshoff, C. H., Zarkowska, T., Godden, K., Paterson, H., Weiss, R. A. & Mittnacht, S. ( 1996; ). Cyclin encoded by KS herpesvirus. Nature 382, 410.[CrossRef]
    [Google Scholar]
  5. Churchill, M. E. & Suzuki, M. ( 1989; ). ‘SPKK’ motifs prefer to bind to DNA at A/T-rich sites. EMBO J 8, 4189–4195.
    [Google Scholar]
  6. Cotter, M. A. & Robertson, E. S. ( 1999; ). The latency-associated nuclear antigen tethers the Kaposi's sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264, 254–264.[CrossRef]
    [Google Scholar]
  7. Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A. & Ganem, D. ( 1998; ). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J Virol 72, 8309–8315.
    [Google Scholar]
  8. Hall, K. T., Giles, M. S., Goodwin, D. J., Calderwood, M. A., Carr, I. M., Stevenson, A. J., Markham, A. F. & Whitehouse, A. ( 2000a; ). Analysis of gene expression in a human cell line stably transduced with herpesvirus saimiri. J Virol 74, 7331–7337.[CrossRef]
    [Google Scholar]
  9. Hall, K. T., Giles, M. S., Goodwin, D. J., Calderwood, M. A., Markham, A. F. & Whitehouse, A. ( 2000b; ). Characterization of the herpesvirus saimiri ORF73 gene product. J Gen Virol 81, 2653–2658.
    [Google Scholar]
  10. Jung, J. U., Stager, M. & Desrosiers, R. C. ( 1994; ). Virus-encoded cyclin. Mol Cell Biol 14, 7235–7244.
    [Google Scholar]
  11. Kalderon, D., Roberts, B. L., Richardson, W. D. & Smith, A. E. ( 1984; ). A short amino acid sequence able to specify nuclear location. Cell 39, 499–509.[CrossRef]
    [Google Scholar]
  12. Kapoor, P. & Frappier, L. ( 2003; ). EBNA1 partitions Epstein–Barr virus plasmids in yeast cells by attaching to human EBNA1-binding protein 2 on mitotic chromosomes. J Virol 77, 6946–6956.[CrossRef]
    [Google Scholar]
  13. Kapoor, P., Shire, K. & Frappier, L. ( 2001; ). Reconstitution of Epstein–Barr virus-based plasmid partitioning in budding yeast. EMBO J 20, 222–230.[CrossRef]
    [Google Scholar]
  14. Kedes, D. H., Lagunoff, M., Renne, R. & Ganem, D. ( 1997; ). Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi's sarcoma-associated herpesvirus. J Clin Invest 100, 2606–2610.[CrossRef]
    [Google Scholar]
  15. Kellam, P., Boshoff, C., Whitby, D., Matthews, S., Weiss, R. A. & Talbot, S. J. ( 1997; ). Identification of a major latent nuclear antigen, LNA-1, in the human herpesvirus 8 genome. J Hum Virol 1, 19–29.
    [Google Scholar]
  16. Lee, M.-A., Diamond, M. E. & Yates, J. L. ( 1999; ). Genetic evidence that EBNA-1 is needed for efficient, stable latent infection by Epstein–Barr virus. J Virol 73, 2974–2982.
    [Google Scholar]
  17. Leight, E. R. & Sugden, B. ( 2000; ). EBNA-1: a protein pivotal to latent infection by Epstein–Barr virus. Rev Med Virol 10, 83–100.[CrossRef]
    [Google Scholar]
  18. Lupton, S. & Levine, A. J. ( 1985; ). Mapping genetic elements of Epstein–Barr virus that facilitate extrachromosomal persistence of Epstein–Barr virus-derived plasmids in human cells. Mol Cell Biol 5, 2533–2542.
    [Google Scholar]
  19. Piolot, T., Tramier, M., Coppey, M., Nicolas, J.-C. & Marechal, V. ( 2001; ). Close but distinct regions of human herpesvirus 8 latency-associated nuclear antigen 1 are responsible for nuclear targeting and binding to human mitotic chromosomes. J Virol 75, 3948–3959.[CrossRef]
    [Google Scholar]
  20. Rainbow, L., Platt, G., Simpson, G., Sarid, R., Gao, S., Stoiber, H., Herrington, C., Moore, P. & Schulz, T. ( 1997; ). The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71, 5915–5921.
    [Google Scholar]
  21. Russo, J. J., Bohenzky, R. A., Chien, M.-C. & 8 other authors ( 1996; ). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93, 14862–14867.[CrossRef]
    [Google Scholar]
  22. Schwam, D. R., Luciano, R. L., Mahajan, S. S., Wong, L. & Wilson, A. C. ( 2000; ). Carboxy terminus of human herpesvirus 8 latency-associated nuclear antigen mediates dimerization, transcriptional repression, and targeting to nuclear bodies. J Virol 74, 8532–8540.[CrossRef]
    [Google Scholar]
  23. Shire, K., Ceccarelli, D. F. J., Avolio-Hunter, T. M. & Frappier, L. ( 1999; ). EBP2, a human protein that interacts with sequences of the Epstein–Barr virus nuclear antigen 1 important for plasmid maintenance. J Virol 73, 2587–2595.
    [Google Scholar]
  24. Suzuki, M. ( 1989; ). SPKK, a new nucleic acid-binding unit of protein found in histone. EMBO J 8, 797–804.
    [Google Scholar]
  25. Talbot, S. J., Weiss, R. A., Kellam, P. & Boshoff, C. ( 1999; ). Transcriptional analysis of human herpesvirus-8 open reading frames 71, 72, 73, K14, and 74 in a primary effusion lymphoma cell line. Virology 257, 84–94.[CrossRef]
    [Google Scholar]
  26. Thome, M., Schneider, P., Hofmann, K. & 11 other authors ( 1997; ). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 517–521.[CrossRef]
    [Google Scholar]
  27. Viejo-Borbolla, A., Kati, E., Sheldon, J. A., Nathan, K., Mattsson, K., Szekely, L. & Schulz, T. F. ( 2003; ). A domain in the C-terminal region of latency-associated nuclear antigen 1 of Kaposi's sarcoma-associated herpesvirus affects transcriptional activation and binding to nuclear heterochromatin. J Virol 77, 7093–7100.[CrossRef]
    [Google Scholar]
  28. Virgin, H., IV, Latreille, P., Wamsley, P., Hallsworth, K., Weck, K., Dal Canto, A. & Speck, S. ( 1997; ). Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71, 5894–5904.
    [Google Scholar]
  29. Wu, H., Kapoor, P. & Frappier, L. ( 2002; ). Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein–Barr nuclear antigen 1. J Virol 76, 2480–2490.[CrossRef]
    [Google Scholar]
  30. Yates, J., Warren, N., Reisman, D. & Sugden, B. ( 1984; ). A cis-acting element from the Epstein–Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci U S A 81, 3806–3810.[CrossRef]
    [Google Scholar]
  31. Yates, J. L., Warren, N. & Sugden, B. ( 1985; ). Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature 313, 812–815.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19437-0
Loading
/content/journal/jgv/10.1099/vir.0.19437-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error