1887

Abstract

The predicted extracellular domain of the CD2v protein of African swine fever virus (ASFV) shares significant similarity to that of the CD2 protein in T cells but has a unique cytoplasmic domain of unknown function. Here we have shown that CD2v is expressed as a glycoprotein of approximately 105 kDa in ASFV-infected cells. In the absence of an extracellular ligand, the majority of CD2v appears to localize to perinuclear membrane compartments. Furthermore, we have shown using the yeast two-hybrid system and by direct binding studies that the cytoplasmic tail of CD2v binds to the cytoplasmic adaptor protein SH3P7 (mAbp1, HIP55), which has been reported to be involved in diverse cellular functions such as vesicle transport and signal transduction. A cDNA clone encoding a variant form of SH3P7 could also be identified and was found to be expressed in a wide range of porcine tissues. Deletion mutagenesis identified proline-rich repeats of sequence PPPKPC in the ASFV CD2v protein to be necessary and sufficient for binding to the SH3 domain of SH3P7. In ASFV-infected cells, CD2v and SH3P7 co-localized in areas surrounding the perinuclear virus factories. These areas also stained with an antibody that recognizes a Golgi network protein, indicating that they contained membranes derived from the Golgi network. Our data provide a first molecular basis for the understanding of the immunomodulatory functions of CD2v in ASFV-infected animals.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19435-0
2004-01-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/1/vir850119.html?itemId=/content/journal/jgv/10.1099/vir.0.19435-0&mimeType=html&fmt=ahah

References

  1. Bierer, B. E., Peterson, A., Gorga, J. C., Herrmann, S. H. & Burakoff, S. J. ( 1988; ). Synergistic T cell activation via the physiological ligands for CD2 and the T cell receptor. J Exp Med 168, 1145–1156.[CrossRef]
    [Google Scholar]
  2. Borca, M. V., Kutish, G. F., Afonso, C. L., Irusta, P., Carrillo, C., Brun, A., Sussman, M. & Rock, D. L. ( 1994; ). An African swine fever virus gene with similarity to the T-lymphocyte surface antigen CD2 mediates hemadsorption. Virology 199, 463–468.[CrossRef]
    [Google Scholar]
  3. Borca, M. V., Carrillo, C., Zsak, L., Laegreid, W. W., Kutish, G. F., Neilan, J. G., Burrage, T. G. & Rock, D. L. ( 1998; ). Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J Virol 72, 2881–2889.
    [Google Scholar]
  4. Brun, A., Rodriguez, F., Escribano, J. M. & Alonso, C. ( 1998; ). Functionality and cell anchorage dependence of the African swine fever virus gene A179L, a viral bcl-2 homolog, in insect cells. J Virol 72, 10227–10233.
    [Google Scholar]
  5. Carvalho, Z. G., De Matos, A. P. & Rodrigues-Pousada, C. ( 1988; ). Association of African swine fever virus with the cytoskeleton. Virus Res 11, 175–192.[CrossRef]
    [Google Scholar]
  6. Cobbold, C., Whittle, J. T. & Wileman, T. ( 1996; ). Involvement of the endoplasmic reticulum in the assembly and envelopment of African swine fever virus. J Virol 70, 8382–8390.
    [Google Scholar]
  7. Dixon, L. K. ( 1988; ). Molecular cloning and restriction enzyme mapping of an African swine fever virus isolate from Malawi. J Gen Virol 69, 1683–1694.[CrossRef]
    [Google Scholar]
  8. Dixon, L. K., Twigg, S. R., Baylis, S. A., Vydelingum, S., Bristow, C., Hammond, J. M. & Smith, G. L. ( 1994; ). Nucleotide sequence of a 55 kbp region from the right end of the genome of a pathogenic African swine fever virus isolate (Malawi LIL20/1). J Gen Virol 75, 1655–1684.[CrossRef]
    [Google Scholar]
  9. Dixon, L. K., Costa, J. V., Escribano, J. M., Rock, D. L., Vinuela, E. & Wilkinson, P. J. ( 2000; ). The Asfarviridae. In Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses, pp. 150–165. Edited by M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle & R. B. Wickner. San Diego: Academic Press.
  10. Dustin, M. L., Olszowy, M. W., Holdorf, A. D. & 8 other authors ( 1998; ). A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94, 667–677.[CrossRef]
    [Google Scholar]
  11. Ensenat, D., Yao, Z., Wang, X. S., Kori, R., Zhou, G., Lee, S. C. & Tan, T. H. ( 1999; ). A novel src homology 3 domain-containing adaptor protein, HIP-55, that interacts with hematopoietic progenitor kinase 1. J Biol Chem 274, 33945–33950.[CrossRef]
    [Google Scholar]
  12. Esteves, A., Marques, M. I. & Costa, J. V. ( 1986; ). Two-dimensional analysis of African swine fever virus proteins and proteins induced in infected cells. Virology 152, 192–206.[CrossRef]
    [Google Scholar]
  13. Estojak, J., Brent, R. & Golemis, E. A. ( 1995; ). Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 15, 5820–5829.
    [Google Scholar]
  14. Fazi, B., Cope, J. T. V., Douangamath, A. & 7 other authors ( 2002; ). Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1: structural and functional analysis. J Biol Chem 277, 5290–5298.[CrossRef]
    [Google Scholar]
  15. Feng, S., Chen, J. K., Yu, H., Simon, J. A. & Schreiber, S. L. ( 1994; ). Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3–ligand interactions. Science 266, 1241–1247.[CrossRef]
    [Google Scholar]
  16. Ferreira, C. ( 1996; ). Expression of ubiquitin, actin, and actin-like genes in African swine fever virus infected cells. Virus Res 44, 11–21.[CrossRef]
    [Google Scholar]
  17. Fucini, R. V., Chen, J. L., Sharma, C., Kessels, M. M. & Stamnes, M. ( 2002; ). Golgi vesicle proteins are linked to the assembly of an actin complex defined by mAbp1. Mol Biol Cell 13, 621–631.[CrossRef]
    [Google Scholar]
  18. Goatley, L. C., Twigg, S. R., Miskin, J. E., Monaghan, P., St-Arnaud, R., Smith, G. L. & Dixon, L. K. ( 2002; ). The African swine fever virus protein j4R binds to the alpha chain of nascent polypeptide-associated complex. J Virol 76, 9991–9999.[CrossRef]
    [Google Scholar]
  19. Harrison-Lavoie, K. J., Lewis, V. A., Hynes, G. M., Collison, K. S., Nutland, E. & Willison, K. R. ( 1993; ). A 102 kDa subunit of a Golgi-associated particle has homology to beta subunits of trimeric G proteins. EMBO J 12, 2847–2853.
    [Google Scholar]
  20. Kessels, M. M., Engqvist-Goldstein, A. E. & Drubin, D. G. ( 2000; ). Association of mouse actin-binding protein 1 (mAbp1/SH3P7), an Src kinase target, with dynamic regions of the cortical actin cytoskeleton in response to Rac1 activation. Mol Biol Cell 11, 393–412.[CrossRef]
    [Google Scholar]
  21. Kessels, M. M., Engqvist-Goldstein, A. E., Drubin, D. G. & Qualmann, B. ( 2001; ). Mammalian Abp1, a signal-responsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. J Cell Biol 153, 351–366.[CrossRef]
    [Google Scholar]
  22. Kirsch, K. H., Georgescu, M. M., Ishimaru, S. & Hanafusa, H. ( 1999; ). CMS: an adapter molecule involved in cytoskeletal rearrangements. Proc Natl Acad Sci U S A 96, 6211–6216.[CrossRef]
    [Google Scholar]
  23. Lappalainen, P., Kessels, M. M., Cope, M. J. & Drubin, D. G. ( 1998; ). The ADF homology (ADF-H) domain: a highly exploited actin-binding module. Mol Biol Cell 9, 1951–1959.[CrossRef]
    [Google Scholar]
  24. Larbolette, O., Wollscheid, B., Schweikert, J., Nielsen, P. J. & Wienands, J. ( 1999; ). SH3P7 is a cytoskeleton adapter protein and is coupled to signal transduction from lymphocyte antigen receptors. Mol Cell Biol 19, 1539–1546.
    [Google Scholar]
  25. Lim, W. A., Richards, F. M. & Fox, R. O. ( 1994; ). Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372, 375–379.[CrossRef]
    [Google Scholar]
  26. McCrossan, M., Windsor, M., Ponnambalam, S., Armstrong, J. & Wileman, T. ( 2001; ). The trans Golgi network is lost from cells infected with African swine fever virus. J Virol 75, 11755–11765.[CrossRef]
    [Google Scholar]
  27. Mayer, B. J. & Gupta, R. ( 1998; ). Functions of SH2 and SH3 domains. Curr Top Microbiol Immunol 228, 1–22.
    [Google Scholar]
  28. Mise-Omata, S., Montagne, B., Deckert, M., Wienands, J. & Acuto, O. ( 2003; ). Mammalian actin binding protein 1 is essential for endocytosis but not lamellipodia formation: functional analysis by RNA interference. Biochem Biophys Res Commun 301, 704–710.[CrossRef]
    [Google Scholar]
  29. Miskin, J. E., Abrams, C. C., Goatley, L. C. & Dixon, L. K. ( 1998; ). A viral mechanism for inhibition of the cellular phosphatase calcineurin. Science 281, 562–565.[CrossRef]
    [Google Scholar]
  30. Miskin, J. E., Abrams, C. C. & Dixon, L. K. ( 2000; ). African swine fever virus protein A238L interacts with the cellular phosphatase calcineurin via a binding domain similar to that of NFAT. J Virol 74, 9412–9420.[CrossRef]
    [Google Scholar]
  31. Nogal, M. L., Buitrago, G. G., de Rodriguez, C., Cubelas, B., Carrascosa, A. L., Salas, M. L. & Revilla, Y. ( 2001; ). African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J Virol 75, 2536–2543.
    [Google Scholar]
  32. Pawson, T. ( 1995; ). Protein modules and signalling networks. Nature 373, 573–580.[CrossRef]
    [Google Scholar]
  33. Pawson, T. & Schlessinger, J. ( 1993; ). SH2 and SH3 domains. Curr Biol 3, 432–442.
    [Google Scholar]
  34. Powell, P. P., Dixon, L. K. & Parkhouse, R. M. ( 1996; ). An IkappaB homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages. J Virol 70, 8527–8533.
    [Google Scholar]
  35. Revilla, Y., Cebrian, A., Baixeras, E., Martinez, C., Vinuela, E. & Salas, M. L. ( 1997; ). Inhibition of apoptosis by the African swine fever virus Bcl-2 homologue: role of the BH1 domain. Virology 228, 400–404.[CrossRef]
    [Google Scholar]
  36. Revilla, Y., Callejo, M., Rodriguez, J. M., Culebras, E., Nogal, M. L., Salas, M. L., Vinuela, E. & Fresno, M. ( 1998; ). Inhibition of nuclear factor κB activation by a virus-encoded IκB-like protein. J Biol Chem 273, 5405–5411.[CrossRef]
    [Google Scholar]
  37. Rodriguez, J. M., Yanez, R. J., Almazan, F., Vinuela, E. & Rodriguez, J. F. ( 1993; ). African swine fever virus encodes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells. J Virol 67, 5312–5320.
    [Google Scholar]
  38. Ruiz-Gonzalvo, F. & McColl, J. M. ( 1993; ). Characterization of a soluble hemagglutinin induced in African swine fever virus-infected cells. Virology 218, 285–289.
    [Google Scholar]
  39. Selvaraj, P., Dustin, M. L., Mitnacht, R., Hunig, T., Springer, T. A. & Plunkett, M. L. ( 1987; ). Rosetting of human T lymphocytes with sheep and human erythrocytes. Comparison of human and sheep ligand binding using purified E receptor. J Immunol 139, 2690–2695.
    [Google Scholar]
  40. Sparks, A. B., Hoffman, N. G., McConnell, S. J., Fowlkes, D. M. & Kay, B. K. ( 1996a; ). Cloning of ligand targets: systematic isolation of SH3 domain-containing proteins. Nat Biotechnol 14, 741–744.[CrossRef]
    [Google Scholar]
  41. Sparks, A. B., Rider, J. E., Hoffman, N. G., Fowlkes, D. M., Quillam, L. A. & Kay, B. K. ( 1996b; ). Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2. Proc Natl Acad Sci U S A 93, 1540–1544.[CrossRef]
    [Google Scholar]
  42. Thomson, G. R., Gainaru, M. D. & van Dellen, A. F. ( 1979; ). African swine fever: pathogenicity and immunogenicity of two non-haemadsorbing viruses. Onderstepoort J Vet Res 46, 149–154.
    [Google Scholar]
  43. Wardley, R. C. & Wilkinson, P. J. ( 1977; ). The association of African swine fever virus with blood components of infected pigs. Arch Virol 55, 327–334.[CrossRef]
    [Google Scholar]
  44. Warren, D. T., Andrews, P. D., Gourlay, C. W. & Ayscough, K. R. ( 2002; ). Sla1p couples the yeast endocytic machinery to proteins regulating actin dynamics. J Cell Sci 115, 1703–1715.
    [Google Scholar]
  45. Yamazaki, H., Takahashi, H., Aoki, T. & Shirao, T. ( 2001; ). Molecular cloning and dendritic localization of rat SH3P7. Eur J Neurosci 14, 998–1008.[CrossRef]
    [Google Scholar]
  46. Yanez, R. J., Rodriguez, J. M., Nogal, M. L., Yuste, L., Enriquez, C., Rodriguez, J. F. & Vinuela, E. ( 1995; ). Analysis of the complete nucleotide sequence of African swine fever virus. Virology 208, 249–278.[CrossRef]
    [Google Scholar]
  47. Yozawa, T., Kutish, G. F., Afonso, C. L., Lu, Z. & Rock, D. L. ( 1994; ). Two novel multigene families, 530 and 300, in the terminal variable regions of African swine fever virus genome. Virology 202, 997–1002.[CrossRef]
    [Google Scholar]
  48. Yu, H., Chen, J. K., Feng, S., Dalgarno, D. C., Brauer, A. W. & Schreiber, S. L. ( 1994; ). Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933–945.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19435-0
Loading
/content/journal/jgv/10.1099/vir.0.19435-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error