1887

Abstract

(CmYLCV) has been characterized as the aetiological agent of the mosaic disease. The virus genome was cloned and the clone was proven to be infectious to . . The presence of typical viroplasms in virus-infected plant tissue and the information obtained from the complete genomic sequence confirmed CmYLCV as a member of the family. All characteristic domains conserved in plant pararetroviruses were found in CmYLCV. Its genome is 8253 bp long and contains seven open reading frames (ORFs). Phylogenetic analysis of the relationships with other members of the revealed that CmYLCV is closely related to the (SbCMV)-like genus and particularly to SbCMV. However, in contrast to the other members of this genus, the primer-binding site is located in the intercistronic region following ORF Ib rather than within this ORF, and an ORF corresponding to ORF VII is missing.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19405-0
2003-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/12/vir843459.html?itemId=/content/journal/jgv/10.1099/vir.0.19405-0&mimeType=html&fmt=ahah

References

  1. Bonneville J. M., Sanfaçon H., Fütterer J., Hohn T. 1989; Posttranscriptional trans-activation in cauliflower mosaic virus. Cell 59:1135–1143
    [Google Scholar]
  2. Calvert L. A., Ospina M. D., Shepherd R. J. 1995; Characterization of cassava vein mosaic virus: a distinct plant pararetrovirus. J Gen Virol 76:1271–1278
    [Google Scholar]
  3. Covey S. N. 1986; Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. Nucleic Acids Res 14:623–633
    [Google Scholar]
  4. Gardner R. C., Shepherd R. J. 1980; A procedure for rapid isolation and analysis of cauliflower mosaic virus DNA. Virology 106:159–161
    [Google Scholar]
  5. Hasegawa A., Verver J., Shimada A., Saito M., Goldbach R., Van Kammen A., Miki K., Kameya-Iwaki M., Hibi T. 1989; The complete sequence of soybean chlorotic mottle virus DNA and the identification of a novel promoter. Nucleic Acids Res 17:9993–10013
    [Google Scholar]
  6. Hebrard E., Drucker M., Leclerc D. 9 other authors 2001; Biochemical characterization of the helper component of cauliflower mosaic virus. J Virol 75:8538–8546
    [Google Scholar]
  7. Hohn T., Fütterer J. 1992; Transcriptional and translational control of gene expression in cauliflower mosaic virus. Curr Opin Genet Dev 2:90–96
    [Google Scholar]
  8. Hohn T., Fütterer J. 1997; The proteins and functions of plant pararetroviruses: knowns and unknowns. Crit Rev Plant Sci 16:133–161
    [Google Scholar]
  9. Karsies A., Hohn T., Leclerc D. 2001; Degradation signals within both terminal domains of the cauliflower mosaic virus capsid protein precursor. Plant J 27:335–343
    [Google Scholar]
  10. Kirchherr D., Albrecht H., Mesnard J. M., Lebeurier G. 1988; Expression of the cauliflower mosaic virus capsid gene in vivo . Plant Mol Biol 11:271–276
    [Google Scholar]
  11. Koonin E. V., Mushegian A. R., Ryabov E. V., Dolja V. V. 1991; Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. J Gen Virol 72:2895–2903
    [Google Scholar]
  12. Leclerc D., Stavolone L., Meier E., Guerra-Peraza O., Herzog E., Hohn T. 2001; The product of ORF III in cauliflower mosaic virus interacts with the viral coat protein through its C-terminal proline rich domain. Virus Genes 22:159–165
    [Google Scholar]
  13. Leh V., Jacquot E., Geldreich A., Hermann T., Leclerc D., Cerutti M., Yot P., Keller M., Blanc S. 1999; Aphid transmission of cauliflower mosaic virus requires the viral PIII protein. EMBO J 18:7077–7085
    [Google Scholar]
  14. Linstead P. J., Hills G. J., Plaskitt K. A., Wilson I. G., Harker C. L., Maule A. J. 1988; The subcellular localization of the gene I product of cauliflower mosaic virus is consistent with a function associated with virus spread. J Gen Virol 69:1809–1818
    [Google Scholar]
  15. Menissier J., De Murcia G., Lebeurier G., Hirth L. 1983; Electron microscopic studies of the different topological forms of the cauliflower mosaic virus DNA: knotted encapsidated DNA and nuclear minichromosome. EMBO J 2:1067–1071
    [Google Scholar]
  16. Mushegian A. R., Wolff J. A., Richins R. D., Shepherd R. J. 1995; Molecular analysis of the essential and nonessential genetic elements in the genome of peanut chlorotic streak caulimovirus. Virology 206:823–834
    [Google Scholar]
  17. Park H. S., Himmelbach A., Browning K. S., Hohn T., Ryabova L. A. 2001; A plant viral ‘reinitiation’ factor interacts with the host translational machinery. Cell 106:723–733
    [Google Scholar]
  18. Pooggin M. M., Futterer J., Skryabin K. G., Hohn T. 1999; A short open reading frame terminating in front of a stable hairpin is the conserved feature in pregenomic RNA leaders of plant pararetroviruses. J Gen Virol 80:2217–2228
    [Google Scholar]
  19. Ragozzino A. 1974; Una virosi del Cestrum parqui L'Erit (Fam. Solanaceae) in Campania. Ann Fac Sci Agrar Univ Stud Napoli Portici IV 8:249
    [Google Scholar]
  20. Rothnie H. M., Chapdelaine Y., Hohn T. 1994; Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Adv Virus Res 44:1–67
    [Google Scholar]
  21. Ryabova L. A., Hohn T. 2000; Ribosome shunting in the cauliflower mosaic virus 35S RNA leader is a special case of reinitiation of translation functioning in plant and animal systems. Genes Dev 14:817–829
    [Google Scholar]
  22. Ryabova L. A., Pooggin M. M., Dominguez D. I., Hohn T. 2000; Continuous and discontinuous ribosome scanning on the cauliflower mosaic virus 35 S RNA leader is controlled by short open reading frames. J Biol Chem 275:37278–37284
    [Google Scholar]
  23. Schoelz J. E., Shepherd R. J. 1988; Host range control of cauliflower mosaic virus. Virology 162:30–37
    [Google Scholar]
  24. Stavolone L., Herzog E., Leclerc D., Hohn T. 2001; Tetramerization is a conserved feature of the virion-associated protein in plant pararetroviruses. J Virol 75:7739–7743
    [Google Scholar]
  25. Takatsuji H., Hirochika H., Fukushi T., Ikeda J. E. 2003; Expression of cauliflower mosaic virus reverse transcriptase in yeast. Nature 319:240–243
    [Google Scholar]
  26. Takemoto Y., Hibi T. 2001; Genes Ia, II, III, IV and V of Soybean chlorotic mottle virus are essential but the gene Ib product is non-essential for systemic infection. J Gen Virol 82:1481–1489
    [Google Scholar]
  27. Thomas C. L., Maule A. J. 1995; Identification of the cauliflower mosaic virus movement protein RNA-binding domain. Virology 206:1145–1149
    [Google Scholar]
  28. Thomas C. L., Perbal C., Maule A. J. 1993; A mutation of cauliflower mosaic virus gene I interferes with virus movement but not virus replication. Virology 192:415–421
    [Google Scholar]
  29. Torruella M., Gordon K., Hohn T. 1989; Cauliflower mosaic virus produces an aspartic proteinase to cleave its polyproteins. EMBO J 8:2819–2825
    [Google Scholar]
  30. van Regenmortel M. H. V., Fauquet C. M. Bishop., Carstens D. H. L., Estes E. B., Lemon M. K., Maniloff S. M., Mayo J., McGeoch M. A., R D. J. Pringle C, Wickner R. B. (editors) 2000; Virus Taxonomy . Seventh Report of the International Committee on Taxonomy of Viruses San Diego: Academic Press;
    [Google Scholar]
  31. Woolston C. J., Covey S. N., Penswick J. R., Davies J. W. 1983; Aphid transmission and a polypeptide are specified by a defined region of the cauliflower mosaic virus genome. Gene 23:15–23
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19405-0
Loading
/content/journal/jgv/10.1099/vir.0.19405-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error