1887

Abstract

Herpesvirus saimiri (HVS) is the prototype gamma-2 herpesvirus, and shares considerable homology with the human gammaherpesviruses Kaposi's sarcoma-associated herpesvirus and Epstein–Barr virus. The generation of herpesvirus mutants is a key facet in the study of virus biology. The use of F-factor-based bacterial artificial chromosomes (BACs) to clone and modify the genomes of herpesviruses has enhanced the variety, precision and simplicity of mutant production. Here we describe the cloning of the genome of HVS non-transforming strain A11-S4 into a BAC. The cloning of the BAC elements disrupts open reading frame (ORF) 15 but the HVS-BAC can still replicate at levels similar to wild-type virus, and can persistently infect fibroblasts. The HVS-BAC was modified by RecA-mediated recombination initially to substitute reporter genes and also to delete the terminal repeats (TR). After deletion of the TR, the HVS-BAC fails to enter a productive virus lytic cycle, and cannot establish a persistent episomal infection when transfected into fibroblast cell lines. This shows that while ORF 15 is dispensable for virus function , the TR is required for both virus latency and lytic virus production. In addition, the HVS-BAC promises to be a valuable tool that can be used for the routine and precise production and analysis of viral mutants to further explore gammaherpesvirus biology.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19387-0
2003-12-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/12/vir843393.html?itemId=/content/journal/jgv/10.1099/vir.0.19387-0&mimeType=html&fmt=ahah

References

  1. Adler H., Messerle M., Wagner M., Koszinowski U. H.. 2000; Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol74:6964–6974
    [Google Scholar]
  2. Adler H., Messerle M., Koszinowski U. H.. 2001; Virus reconstituted from infectious bacterial artificial chromosome (BAC)-cloned murine gammaherpesvirus 68 acquires wild-type properties in vivo only after excision of BAC vector sequences. J Virol75:5692–5696
    [Google Scholar]
  3. Albrecht J. C., Nicholas J., Cameron K. R., Newman C., Fleckenstein B., Honess R. W.. 1992a; Herpesvirus saimiri has a gene specifying a homologue of the cellular membrane glycoprotein CD59. Virology190:527–530
    [Google Scholar]
  4. Albrecht J. C., Nicholas J., Biller D.. & 7 other authors (1992b). Primary structure of the herpesvirus saimiri genome. J Virol66:5047–5058
    [Google Scholar]
  5. Ballestas M. E., Kaye K. M.. 2001; Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis -acting terminal repeat (TR) sequence and specifically binds TR DNA. J Virol75:3250–3258
    [Google Scholar]
  6. Ballestas M. E., Chatis P. A., Kaye K. M.. 1999; Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science284:641–644
    [Google Scholar]
  7. Borst E. M., Hahn G., Koszinowski U. H., Messerle M.. 1999; Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli : a new approach for construction of HCMV mutants. J Virol73:8320–8329
    [Google Scholar]
  8. Collins C. M., Medveczky M. M., Lund T., Medveczky P. G.. 2002; The terminal repeats and latency-associated nuclear antigen of herpesvirus saimiri are essential for episomal persistence of the viral genome. J Gen Virol83:2269–2278
    [Google Scholar]
  9. Delecluse H. J., Hilsendegen T., Pich D., Zeidler R., Hammerschmidt W.. 1998; Propagation and recovery of intact, infectious Epstein–Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A95:8245–8250
    [Google Scholar]
  10. Delecluse H. J., Pich D., Hilsendegen T., Baum C., Hammerschmidt W.. 1999; A first-generation packaging cell line for Epstein–Barr virus-derived vectors. Proc Natl Acad Sci U S A96:5188–5193
    [Google Scholar]
  11. Delecluse H. J., Kost M., Feederle R., Wilson L., Hammerschmidt W.. 2001; Spontaneous activation of the lytic cycle in cells infected with a recombinant Kaposi's sarcoma-associated virus. J Virol75:2921–2928
    [Google Scholar]
  12. Desrosiers R. C., Burghoff R. L., Bakker A., Kamine J.. 1984; Construction of replication-competent Herpesvirus saimiri deletion mutants. J Virol49:343–348
    [Google Scholar]
  13. Desrosiers R. C., Bakker A., Kamine J., Falk L. A., Hunt R. D., King N. W.. 1985; A region of the Herpesvirus saimiri genome required for oncogenicity. Science228:184–187
    [Google Scholar]
  14. Desrosiers R. C., Silva D. P., Waldron L. M., Letvin N. L.. 1986; Nononcogenic deletion mutants of herpesvirus saimiri are defective for in vitro immortalization. J Virol57:701–705
    [Google Scholar]
  15. Duboise S. M., Guo J., Czajak S., Desrosiers R. C., Jung J. U.. 1998; STP and Tip are essential for herpesvirus saimiri oncogenicity. J Virol72:1308–1313
    [Google Scholar]
  16. Fejér G., Medveczky M. M., Horvath E., Lane B., Chang Y., Medveczky P. G.. 2003; The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus interacts preferentially with the terminal repeats of the genome in vivo and this complex is sufficient for episomal DNA replication. J Gen Virol84:1451–1462
    [Google Scholar]
  17. Fickenscher H., Fleckenstein B.. 2001; Herpesvirus saimiri. Philos Trans R Soc Lond B Biol Sci356:545–567
    [Google Scholar]
  18. Fleckenstein B., Muller I., Werner J.. 1977; The presence of Herpesvirus Saimiri genomes in virus-transformed cells. Int J Cancer19:546–554
    [Google Scholar]
  19. Garber A. C., Hu J., Renne R.. 2002; Latency-associated nuclear antigen (LANA) cooperatively binds to two sites within the terminal repeat, and both sites contribute to the ability of LANA to suppress transcription and facilitate DNA replication. J Biol Chem277:27401–27411
    [Google Scholar]
  20. Grundhoff A., Ganem D.. 2003; The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus permits replication of terminal repeat-containing plasmids. J Virol77:2779–2783
    [Google Scholar]
  21. Hall K. T., Giles M. S., Goodwin D. J., Calderwood M. A., Carr I. M., Stevenson A. J., Markham A. F., Whitehouse A.. 2000a; Analysis of gene expression in a human cell line stably transduced with herpesvirus saimiri. J Virol74:7331–7337
    [Google Scholar]
  22. Hall K. T., Giles M. S., Goodwin D. J., Calderwood M. A., Markham A. F., Whitehouse A.. 2000b; Characterization of the herpesvirus saimiri ORF73 gene product. J Gen Virol81:2653–2658
    [Google Scholar]
  23. Hart S. L., Arancibia-Carcamo C. V., Wolfert M. A.. 12 other authors 1998; Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector. Hum Gene Ther9:575–585
    [Google Scholar]
  24. Horsburgh B. C., Hubinette M. M., Qiang D., MacDonald M. L., Tufaro F.. 1999; Allele replacement: an application that permits rapid manipulation of herpes simplex virus type 1 genomes. Gene Ther6:922–930
    [Google Scholar]
  25. Hu J., Garber A. C., Renne R.. 2002; The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J Virol76:11677–11687
    [Google Scholar]
  26. Jung J. U., Trimble J. J., King N. W., Biesinger B., Fleckenstein B. W., Desrosiers R. C.. 1991; Identification of transforming genes of subgroup A and C strains of herpesvirus saimiri. Proc Natl Acad Sci U S A88:7051–7055
    [Google Scholar]
  27. Kaschka-Dierich C., Werner F. J., Bauer I., Fleckenstein B.. 1982; Structure of nonintegrated, circular Herpesvirus saimiri and Herpesvirus ateles genomes in tumor cell lines and in vitro -transformed cells. J Virol44:295–310
    [Google Scholar]
  28. Knust E., Schirm S., Dietrich W., Bodemer W., Kolb E., Fleckenstein B.. 1983; Cloning of herpesvirus saimiri DNA fragments representing the entire L-region of the genome. Gene25:281–289
    [Google Scholar]
  29. Lalioti M., Heath J.. 2001; A new method for generating point mutations in bacterial artificial chromosomes by homologous recombination in Escherichia coli . Nucleic Acids Res29:E14
    [Google Scholar]
  30. Mahony T. J., McCarthy F. M., Gravel J. L., West L., Young P. L.. 2002; Construction and manipulation of an infectious clone of the bovine herpesvirus 1 genome maintained as a bacterial artificial chromosome. J Virol76:6660–6668
    [Google Scholar]
  31. Messerle M., Crnkovic I., Hammerschmidt W., Ziegler H., Koszinowski U. H.. 1997; Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A94:14759–14763
    [Google Scholar]
  32. Murphy C., Kretschemer C., Biesinger B., Beckers J., Jung J., Desrosiers R., Müller H. H., Fleckenstein B., Rüther U.. 1994; Epithelial tumours induced by a herpesvirus oncogene in transgenic mice. Oncogene9:221–226
    [Google Scholar]
  33. Narayanan K., Williamson R., Zhang Y., Stewart A. F., Ioannou P. A.. 1999; Efficient and precise engineering of a 200 kb β -globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system. Gene Ther6:442–447
    [Google Scholar]
  34. Nicholas J.. 2000; Evolutionary aspects of oncogenic herpesviruses. Mol Pathol53:222–237
    [Google Scholar]
  35. Nicholas J., Gompels U. A., Craxton M. A., Honess R. W.. 1988; Conservation of sequence and function between the product of the 52 kDa immediate-early gene of herpesvirus saimiri and the BMLF1-encoded transcriptional effector (EB2) of Epstein–Barr virus. J Virol62:3250–3257
    [Google Scholar]
  36. Nicholas J., Coles L. S., Newman C., Honess R. W.. 1991; Regulation of the herpesvirus saimiri (HVS) delayed-early 110-kilodalton promoter by HVS immediate-early gene products and a homolog of the Epstein–Barr virus R trans activator. J Virol65:2457–2466
    [Google Scholar]
  37. Rother R. P., Rollins S. A., Fodor W. L., Albrecht J. C., Setter E., Fleckenstein B., Squinto S. P.. 1994; Inhibition of complement-mediated cytolysis by the terminal complement inhibitor of herpesvirus saimiri. J Virol68:730–737
    [Google Scholar]
  38. Saeki Y., Ichikawa T., Saeki A., Chiocca E. A., Tobler K., Ackermann M., Breakefield X. O., Fraefel C.. 1998; Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli : rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum Gene Ther9:2787–2794
    [Google Scholar]
  39. Schirm S., Muller I., Desrosiers R. C., Fleckenstein B.. 1984; Herpesvirus saimiri DNA in a lymphoid cell line established by in vitro transformation. J Virol49:938–946
    [Google Scholar]
  40. Shizuya H., Birren B., Kim U. J., Mancino V., Slepak T., Tachiiri Y., Simon M.. 1992; Cloning and stable maintenance of 300 kbp fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A89:8794–8797
    [Google Scholar]
  41. Smith P. G., Coletta P. L., Markham A. F., Whitehouse A.. 2001; In vivo episomal maintenance of a herpesvirus saimiri-based gene delivery vector. Gene Ther8:1762–1769
    [Google Scholar]
  42. Stavropoulos T. A., Strathdee C. A.. 1998; An enhanced packaging system for helper-dependent herpes simplex virus vectors. J Virol72:7137–7143
    [Google Scholar]
  43. Wade-Martins R., Frampton J., James M. R.. 1999; Long-term stability of large insert genomic DNA episomal shuttle vectors in human cells. Nucleic Acids Res27:1674–1682
    [Google Scholar]
  44. Wade-Martins R., White R. E., Kimura H., Cook P. R., James M. R.. 2000; Stable correction of a genetic deficiency in human cells by an episome carrying a 115 kb genomic transgene. Nat Biotechnol18:1311–1314
    [Google Scholar]
  45. Wagner M., Ruzsics Z., Koszinowski U. H.. 2002; Herpesvirus genetics has come of age. Trends Microbiol10:318–324
    [Google Scholar]
  46. Wehner L.-E., Schröder N., Kamino K., Friedrich U., Biesinger B., Rüther U.. 2001; Herpesvirus saimiri tip gene causes T-cell lymphomas in transgenic mice. DNA Cell Biol20:81–88
    [Google Scholar]
  47. Werner F. J., Bornkamm G. W., Fleckenstein B.. 1977; Episomal viral DNA in a Herpesvirus saimiri-transformed lymphoid cell line. J Virol22:794–803
    [Google Scholar]
  48. White R. E., Wade-Martins R., James M. R.. 2002; Infectious delivery of 120 kb genomic DNA by an Epstein–Barr virus amplicon vector. Mol Ther5:427–435
    [Google Scholar]
  49. Whitehouse A., Carr I. M., Griffiths J. C., Meredith D. M.. 1997; The herpesvirus saimiri ORF50 gene, encoding a transcriptional activator homologous to the Epstein–Barr virus R protein, is transcribed from two distinct promoters of different temporal phases. J Virol71:2550–2554
    [Google Scholar]
  50. Whitehouse A., Cooper M., Hall K. T., Meredith D. M.. 1998a; The open reading frame (ORF) 50a gene product regulates ORF 57 gene expression in herpesvirus saimiri. J Virol72:1967–1973
    [Google Scholar]
  51. Whitehouse A., Cooper M., Meredith D. M.. 1998b; The immediate-early gene product encoded by open reading frame 57 of herpesvirus saimiri modulates gene expression at a post-transcriptional level. J Virol72:857–861
    [Google Scholar]
  52. Zhou F. C., Zhang Y. J., Deng J. H., Wang X. P., Pan H. Y., Hettler E., Gao S. J.. 2002; Efficient infection by a recombinant Kaposi's sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis. J Virol76:6185–6196
    [Google Scholar]
  53. Zimmermann J., Hammerschmidt W.. 1995; Structure and role of the terminal repeats of Epstein–Barr virus in processing and packaging of virion DNA. J Virol69:3147–3155
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19387-0
Loading
/content/journal/jgv/10.1099/vir.0.19387-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error