Serological evidence of , and infection of birds in the UK Free

Abstract

The introduction and rapid dispersal of the African flavivirus (WNV) throughout North America, and the high fatality rate due to encephalitis in birds, horses, other wildlife species and humans, has attracted major attention worldwide. , another flavivirus, came to prominence in 2001, when it was identified as the agent responsible for a drop in the bird population in Austria; previously this encephalitic virus was found only in birds and mosquitoes in Africa. , a pathogenic alphavirus that causes arthritis, is widespread throughout Africa, Europe, Asia and Australia, infecting a range of arthropods and vertebrates and is genetically related to encephalitic viruses in North America. Currently there is no evidence that any of these viruses cause disease in the UK. Here the presence of virus-specific neutralizing antibodies is reported in the sera of resident and migrant birds in the UK, implying that each of these viruses is being introduced to UK birds, possibly by mosquitoes. This is supported by nucleotide sequencing that identified three slightly different sequences of WNV RNA in tissues of magpies and a blackbird. The detection of specific neutralizing antibodies to WNV in birds provides a plausible explanation for the lack of evidence of a decrease in the bird population in the UK compared with North America. The potential health risk posed to humans and animals by these viruses circulating in the UK is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19341-0
2003-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/10/vir842807.html?itemId=/content/journal/jgv/10.1099/vir.0.19341-0&mimeType=html&fmt=ahah

References

  1. Blackburn N. K., Thompson D. L., Jupp P. G. 1987; Antigenic relationship of West Nile strains by titre ratios calculated from cross-neutralization test results. Epidemiol Infect 99:551–557
    [Google Scholar]
  2. Buckley A., Gould E. A. 1985; Neutralization of yellow fever virus studied using monoclonal and polyclonal antibodies. J Gen Virol 66:2523–2531
    [Google Scholar]
  3. Calisher C. H., Karabatsos N. 1988; Arbovirus serogroups: definition and geographic distribution. In The Arboviruses: Epidemiology and Ecology pp  19–57 Edited by Monath T. P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  4. Cantile C., Di Guardo G., Eleni C., Arispici M. 2000; Clinical and neuropathological features of West Nile virus equine encephalomyelitis in Italy. Equine Vet J 32:31–35
    [Google Scholar]
  5. Chanas A. C., Gould E. A., Clegg J. C., Varma M. G. 1982; Monoclonal antibodies to Sindbis virus glycoprotein E1 can neutralize, enhance infectivity, and independently inhibit haemagglutination or haemolysis. J Gen Virol 58:37–46
    [Google Scholar]
  6. Della-Porta A. J., Westaway E. G. 1978; A multi-hit model for the neutralization of animal viruses. J Gen Virol 38:1–19
    [Google Scholar]
  7. Ernek E., Kozuch O., Nosek J., Teplan J., Folk C. 1977; Arboviruses in birds captured in Slovakia. J Hyg Epidemiol Microbiol Immunol 21:353–359
    [Google Scholar]
  8. Gould E. A. 2002; Evolution of the Japanese encephalitis serocomplex viruses. In Japanese Encephalitis and West Nile Viruses pp  391–404 Edited by Mackenzie J. M., Barrett A. D., Deubel V. Berlin: Springer-Verlag;
    [Google Scholar]
  9. Gould E. A., Buckley A., Cammack N., Barrett A. D. T., Clegg J. C. S., Ishak R., Varma M. G. R. 1985; Examination of the immunological relationships between flaviviruses using yellow fever virus monoclonal antibodies. J Gen Virol 66:1369–1382
    [Google Scholar]
  10. Gould E. A., Buckley A., Higgs S., Gaidamovich S. 1990; Antigenicity of flaviviruses. Arch Virol (Suppl 1):S137–S152
    [Google Scholar]
  11. Hammam H. M., Clarke D. H., Price J. L. 1965; Antigenic variation of West Nile virus in relation to geography. Am J Epidemiol 82:40–55
    [Google Scholar]
  12. Hubalek Z., Halouzka J. 1999; West Nile fever: a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5:643–650
    [Google Scholar]
  13. Jupp P. G., McIntosh B. M., Blackburn N. K. 1986; Experimental assessment of the vector competence of Culex ( Culex ) neavei Theobald with West Nile and Sindbis viruses in South Africa. Trans R Soc Trop Med Hyg 80:226–230
    [Google Scholar]
  14. Juricova Z., Hubalek Z., Halouzka J., Machacek P. 1993; Virologic detection of arboviruses in greater cormorants. Vet Med Praha 38:375–379
    [Google Scholar]
  15. Juricova Z., Pinowski J., Literak I., Hahm K. H., Romanowski J. 1998; Antibodies to alphavirus, flavivirus, and bunyavirus arboviruses in house sparrows ( Passer domesticus ) and tree sparrows ( P. montanus ) in Poland. Avian Dis 42:182–185
    [Google Scholar]
  16. Karabatsos N. 1985 International Catalogue of Arthropod-Borne Viruses , 3rd edn. San Antonio, TX: Am Soc Trop Med Hyg;
    [Google Scholar]
  17. Lanciotti R. S., Roehrig J. T., Deubel V. 21 other authors 1999; Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337
    [Google Scholar]
  18. Lozano A., Filipe A. R. 1998; Antibodies against the West Nile virus and other arthropod-transmitted viruses in the Ebro Delta region. Rev Esp Salud Publica 72:245–250
    [Google Scholar]
  19. Mackenzie J. M., Barrett A. D., Deubel V. 2002; The Japanese encephalitis serological group of flaviviruses: a brief introduction to the group. In Japanese Encephalitis and West Nile Viruses pp  1–10 Edited by Mackenzie J. M., Barrett A. D., Deubel V. Berlin: Springer-Verlag;
    [Google Scholar]
  20. McLean R. G., Mullenix J., Kerschner J., Hamm J. 1983; The house sparrow ( Passer domesticus ) as a sentinel for St. Louis encephalitis virus. . Am J Trop Med Hyg 32:1120–1129
    [Google Scholar]
  21. Murgue B., Murri S., Zientara S., Durand B., Durand J. P., Zeller H. 2000; West Nile outbreak in horses in southern France, 2000: the return after 35 years. Emerg Infect Dis 7:792–796
    [Google Scholar]
  22. Niklasson B. 1988; Sindbis and Sindbis-like viruses. In The Arboviruses . Epidemiology and Ecology pp  167–176 Edited by Monath T. P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  23. Olson K., Trent D. W. 1985; Genetic and antigenic variations among geographical isolates of Sindbis virus. J Gen Virol 66:797–810
    [Google Scholar]
  24. Peiris J. S., Porterfield J. S., Roehrig J. T. 1982; Monoclonal antibodies against the flavivirus West Nile. J Gen Virol 58:283–289
    [Google Scholar]
  25. Porterfield J. S. 1980; Antigenic characteristics and classification of Togaviridae . In The Togaviruses pp  13–46 Edited by Schlesinger R. W. New York: Academic Press;
    [Google Scholar]
  26. Reid H. W. 1984; Epidemiology of louping ill. In Vectors in Virus Biology pp  161–178 Edited by Mayo M. A., Harrap K. A. London: Academic Press;
    [Google Scholar]
  27. Roehrig J. T., Layton M., Smith P., Campbell G. L., Nasci R., Lanciotti R. 2002; The emergence of West Nile virus in North America: ecology, epidemiology and surveillance. In Japanese Encephalitis and West Nile Viruses pp  223–240 Edited by Mackenzie J. S., Barrett A. D., Deubel V. Berlin: Springer-Verlag;
    [Google Scholar]
  28. Savage H. M., Ceianu C., Nicolescu G. 7 other authors 1999; Entomologic and avian investigations of an epidemic of West Nile fever in Romania in 1996, with serologic and molecular characterization of a virus isolate from mosquitoes. Am J Trop Med Hyg 61:600–611 erratum 62, 162
    [Google Scholar]
  29. Shah K. V., Johnson H. N., Rao T. R., Rajagopalan P. K., Lamba B. S. 1960; Isolation of five strains of Sindbis virus in India. Indian J Med Res 48:300–308
    [Google Scholar]
  30. Shirako Y., Niklasson B., Dalrymple J. M., Strauss E. G., Strauss J. H. 1991; Structure of the Ockelbo virus genome and its relationship to other Sindbis viruses. Virology 182:753–764
    [Google Scholar]
  31. Sixl W., Stunzner E., Withalm H. 1988; Serological examination for antibodies against West Nile virus, Semlikivirus and chikungunyavirus in laboratory mice, parasitized by nidicole fauna from swallow's nests. Geogr Med Suppl 1:51–55
    [Google Scholar]
  32. Smithburn K. C., Hughes T. P., Burke A. W., Paul J. H. 1940; A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg 20:471–492
    [Google Scholar]
  33. Theiler M., Downs W. G. 1973 The Arthropod-borne Viruses of Vertebrates: an Account of the Rockefeller Foundation Virus Program (1951–1970) London: Yale University Press;
    [Google Scholar]
  34. Weissenbock H., Kolodziejek J., Url A., Lussy H., Rebel-Bauder B., Nowotny N. 2002; Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe. Emerg Infect Dis 8:652–656
    [Google Scholar]
  35. Woodhall J. P. 1964; The viruses isolated from arthropods at the East African Virus Research Institute in the 26 years ending December 1963. Proc E African Acad 2:141–146
    [Google Scholar]
  36. Work T. H., Hurlbut H. S., Taylor R. M. 1955; Indigenous wild birds of the Nile Delta as potential West Nile virus circulating reservoirs. Am J Trop Med Hyg 4:872–888
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19341-0
Loading
/content/journal/jgv/10.1099/vir.0.19341-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed