1887

Abstract

The hepatitis C virus (HCV) NS3 protein possesses both protease and helicase activities and is essential for virus replication and maturation. Specific inhibition of NS3 enzymatic activity can be achieved by antibody binding. Transduction of hepatocytes with encoding cDNA leading to intracellular expression of antibody fragments is expected to terminate HCV replication in infected cells. The objective of the present study was the generation of human antibody fragments that neutralize the viral NS3 helicase activity for gene therapeutic applications and drug design. A human immunoglobulin phage-display library cloned from bone marrow aspirate of patients infected with HCV was used for affinity selection against HCV NS3 helicase. Antibody fragments with high affinity to HCV helicase were isolated. To evaluate the inhibitory potential of isolated single-chain antibody fragments, a helicase-mediated, DNA-unwinding enzymatic assay was developed in ELISA format. Recombinant protein comprising the full-length HCV NS3 helicase domain was expressed in the baculovirus expression system. Recombinant antibodies that inhibit the HCV helicase at nanomolar concentrations, with efficacies ranging from 20 % to complete abrogation of enzymatic unwinding activity, were identified. These antibody fragments may be useful for novel gene therapeutic strategies that employ intracellular immunization and may provide new insights into the design of small molecule inhibitors of essential HCV proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19299-0
2003-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/9/vir842323.html?itemId=/content/journal/jgv/10.1099/vir.0.19299-0&mimeType=html&fmt=ahah

References

  1. Alvarez, R. D., Barnes, M. N., Gomez-Navarro, J. & 8 other authors ( 2000; ). A cancer gene therapy approach utilizing an anti-erbB-2 single-chain antibody-encoding adenovirus (AD21): a phase I trial. Clin Cancer Res 6, 3081–3087.
    [Google Scholar]
  2. Bartenschlager, R., Ahlborn-Laake, L., Mous, J. & Jacobsen, H. ( 1994; ). Kinetic and structural analyses of hepatitis C virus polyprotein processing. J Virol 68, 5045–5055.
    [Google Scholar]
  3. Boel, E., Verlaan, S., Poppelier, M. J., Westerdaal, N. A., Van Strijp, J. A. & Logtenberg, T. ( 2000; ). Functional human monoclonal antibodies of all isotypes constructed from phage display library-derived single-chain Fv antibody fragments. J Immunol Methods 239, 153–166.[CrossRef]
    [Google Scholar]
  4. BouHamdan, M., Duan, L. X., Pomerantz, R. J. & Strayer, D. S. ( 1999; ). Inhibition of HIV-1 by an anti-integrase single-chain variable fragment (SFv): delivery by SV40 provides durable protection against HIV-1 and does not require selection. Gene Ther 6, 660–666.[CrossRef]
    [Google Scholar]
  5. Chen, S. Y., Bagley, J. & Marasco, W. A. ( 1994a; ). Intracellular antibodies as a new class of therapeutic molecules for gene therapy. Hum Gene Ther 5, 595–601.[CrossRef]
    [Google Scholar]
  6. Chen, S. Y., Khouri, Y., Bagley, J. & Marasco, W. A. ( 1994b; ). Combined intra- and extracellular immunization against human immunodeficiency virus type 1 infection with a human anti-gp120 antibody. Proc Natl Acad Sci U S A 91, 5932–5936.[CrossRef]
    [Google Scholar]
  7. Chen, L., Li, G., Tang, L., Wang, J. & Ge, X. R. ( 2002; ). The inhibition of lung cancer cell growth by intracellular immunization with LC-1 ScFv. Cell Res 12, 47–54.[CrossRef]
    [Google Scholar]
  8. Cho, H. S., Ha, N. C., Kang, L. W., Chung, K. M., Back, S. H., Jang, S. K. & Oh, B. H. ( 1998; ). Crystal structure of RNA helicase from genotype 1b hepatitis C virus. A feasible mechanism of unwinding duplex RNA. J Biol Chem 273, 15045–15052.[CrossRef]
    [Google Scholar]
  9. Deshane, J., Siegal, G. P., Alvarez, R. D., Wang, M. H., Feng, M., Cabrera, G., Liu, T., Kay, M. & Curiel, D. T. ( 1995; ). Targeted tumor killing via an intracellular antibody against erbB-2. J Clin Invest 96, 2980–2989.[CrossRef]
    [Google Scholar]
  10. Galun, E., Eren, R., Safadi, R. & 11 other authors ( 2002; ). Clinical evaluation (phase I) of a combination of two human monoclonal antibodies to HBV: safety and antiviral properties. Hepatology 35, 673–679.[CrossRef]
    [Google Scholar]
  11. Goncalves, J., Silva, F., Freitas-Vieira, A., Santa-Marta, M., Malho, R., Yang, X., Gabuzda, D. & Barbas, C., III ( 2002; ). Functional neutralization of HIV-1 Vif protein by intracellular immunization inhibits reverse transcription and viral replication. J Biol Chem 277, 32036–32045.[CrossRef]
    [Google Scholar]
  12. Grakoui, A., Wychowski, C., Lin, C., Feinstone, S. M. & Rice, C. M. ( 1993; ). Expression and identification of hepatitis C virus polyprotein cleavage products. J Virol 67, 1385–1395.
    [Google Scholar]
  13. Gram, H., Marconi, L. A., Barbas, C., III, Collet, T. A., Lerner, R. A. & Kang, A. S. ( 1992; ). In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc Natl Acad Sci U S A 89, 3576–3580.[CrossRef]
    [Google Scholar]
  14. Gwack, Y., Kim, D. W., Han, J. H. & Choe, J. ( 1997; ). DNA helicase activity of the hepatitis C virus nonstructural protein 3. Eur J Biochem 250, 47–54.[CrossRef]
    [Google Scholar]
  15. Harrison, J. L., Williams, S. C., Winter, G. & Nissim, A. ( 1996; ). Screening of phage antibody libraries. Methods Enzymol 267, 83–109.
    [Google Scholar]
  16. Higgins, D. G., Thompson, J. D. & Gibson, T. J. ( 1996; ). Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266, 383–402.
    [Google Scholar]
  17. Hijikata, M., Mizushima, H., Tanji, Y., Komoda, Y., Hirowatari, Y., Akagi, T., Kato, N., Kimura, K. & Shimotohno, K. ( 1993; ). Proteolytic processing and membrane association of putative nonstructural proteins of hepatitis C virus. Proc Natl Acad Sci U S A 90, 10773–10777.[CrossRef]
    [Google Scholar]
  18. Hoogenboom, H. R. & Winter, G. ( 1992; ). By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol 227, 381–388.[CrossRef]
    [Google Scholar]
  19. Hsu, C. C., Hwang, L. H., Huang, Y. W., Chi, W. K., Chu, Y. D. & Chen, D. S. ( 1998; ). An ELISA for RNA helicase activity: application as an assay of the NS3 helicase of hepatitis C virus. Biochem Biophys Res Commun 253, 594–599.[CrossRef]
    [Google Scholar]
  20. Jean, D., Tellez, C., Huang, S., Davis, D. W., Bruns, C. J., McConkey, D. J., Hinrichs, S. H. & Bar-Eli, M. ( 2000; ). Inhibition of tumor growth and metastasis of human melanoma by intracellular anti-ATF-1 single chain Fv fragment. Oncogene 19, 2721–2730.[CrossRef]
    [Google Scholar]
  21. Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S. & Foeller, C. ( 1991; ). Sequences of Proteins of Immunological Interest, 5th edn. Bethesda, MD: National Technical Information.
  22. Khu, Y. L., Koh, E., Lim, S. P., Tan, Y. H., Brenner, S., Lim, S. G., Hong, W. J. & Goh, P. Y. ( 2001; ). Mutations that affect dimer formation and helicase activity of the hepatitis C virus helicase. J Virol 75, 205–214.[CrossRef]
    [Google Scholar]
  23. Kim, D. W., Kim, J., Gwack, Y., Han, J. H. & Choe, J. ( 1997; ). Mutational analysis of the hepatitis C virus RNA helicase. J Virol 71, 9400–9409.
    [Google Scholar]
  24. Kim, J. L., Morgenstern, K. A., Griffith, J. P., Dwyer, M. D., Thomson, J. A., Murcko, M. A., Lin, C. & Caron, P. R. ( 1998; ). Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 6, 89–100.[CrossRef]
    [Google Scholar]
  25. Kitamura, Y., Ishikawa, T., Okui, N., Kobayashi, N., Kanda, T., Shimada, T., Miyake, K. & Yoshiike, K. ( 1999; ). Inhibition of replication of HIV-1 at both early and late stages of the viral life cycle by single-chain antibody against viral integrase. J Acquir Immune Defic Syndr Hum Retrovirol 20, 105–114.[CrossRef]
    [Google Scholar]
  26. Kolykhalov, A. A., Agapov, E. V. & Rice, C. M. ( 1994; ). Specificity of the hepatitis C virus NS3 serine protease: effects of substitutions at the 3/4A, 4A/4B, 4B/5A, and 5A/5B cleavage sites on polyprotein processing. J Virol 68, 7525–7533.
    [Google Scholar]
  27. Krebber, A., Bornhauser, S., Burmester, J., Honegger, A., Willuda, J., Bosshard, H. R. & Pluckthun, A. ( 1997; ). Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Methods 201, 35–55.[CrossRef]
    [Google Scholar]
  28. Levin, M. K. & Patel, S. S. ( 2002; ). Helicase from hepatitis C virus, energetics of DNA binding. J Biol Chem 277, 29377–29385.[CrossRef]
    [Google Scholar]
  29. Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L. & Bartenschlager, R. ( 1999; ). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113.[CrossRef]
    [Google Scholar]
  30. Marasco, W. A. ( 1997; ). Intrabodies: turning the humoral immune system outside in for intracellular immunization. Gene Ther 4, 11–15.[CrossRef]
    [Google Scholar]
  31. Marasco, W. A., LaVecchio, J. & Winkler, A. ( 1999; ). Human anti-HIV-1 Tat sFv intrabodies for gene therapy of advanced HIV-1-infection and AIDS. J Immunol Methods 231, 223–238.[CrossRef]
    [Google Scholar]
  32. Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffiths, A. D. & Winter, G. ( 1991; ). By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222, 581–597.[CrossRef]
    [Google Scholar]
  33. Martin, A. C. R. ( 1996; ). Accessing the Kabat antibody sequence database by computer. Proteins 25, 130–133.[CrossRef]
    [Google Scholar]
  34. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. ( 1990; ). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.[CrossRef]
    [Google Scholar]
  35. Mhashilkar, A. M., LaVecchio, J., Eberhardt, B. & 9 other authors ( 1999; ). Inhibition of human immunodeficiency virus type 1 replication in vitro in acutely and persistently infected human CD4+ mononuclear cells expressing murine and humanized anti-human immunodeficiency virus type 1 Tat single-chain variable fragment intrabodies. Hum Gene Ther 10, 1453–1467.[CrossRef]
    [Google Scholar]
  36. Moradpour, D., Bieck, E., Hugle, T., Wels, W., Wu, J. Z., Hong, Z., Blum, H. E. & Bartenschlager, R. ( 2002; ). Functional properties of a monoclonal antibody inhibiting the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem 277, 593–601.[CrossRef]
    [Google Scholar]
  37. Pang, P. S., Jankowsky, E., Planet, P. J. & Pyle, A. M. ( 2002; ). The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J 21, 1168–1176.[CrossRef]
    [Google Scholar]
  38. Pflugheber, J., Fredericksen, B., Sumpter, R., Jr, Wang, C., Ware, F., Sodora, D. L. & Gale, M., Jr ( 2002; ). Regulation of PKR and IRF-1 during hepatitis C virus RNA replication. Proc Natl Acad Sci U S A 99, 4650–4655.[CrossRef]
    [Google Scholar]
  39. Pope, A. R., Embleton, M. J. & Mernaugh, R. ( 1996; ). Construction and use of antibody gene repertoires. In Antibody Engineering: a Practical Approach, pp. 1–40. Edited by J. McCafferty, H. Hoogenboom & D. Chiswell. Oxford: IRL Press.
  40. Poznansky, M. C., Foxall, R., Mhashilkar, A., Coker, R., Jones, S., Ramstedt, U. & Marasco, W. ( 1998; ). Inhibition of human immunodeficiency virus replication and growth advantage of CD4+ T cells from HIV-infected individuals that express intracellular antibodies against HIV-1 gp120 or Tat. Hum Gene Ther 9, 487–496.[CrossRef]
    [Google Scholar]
  41. Preugschat, F., Averett, D. R., Clarke, B. E. & Porter, D. J. ( 1996; ). A steady-state and pre-steady-state kinetic analysis of the NTPase activity associated with the hepatitis C virus NS3 helicase domain. J Biol Chem 271, 24449–24457.[CrossRef]
    [Google Scholar]
  42. Rader, C. & Barbas, C., III ( 1997; ). Phage display of combinatorial antibody libraries. Curr Opin Biotechnol 8, 503–508.[CrossRef]
    [Google Scholar]
  43. Richardson, J. H., Hofmann, W., Sodroski, J. G. & Marasco, W. A. ( 1998; ). Intrabody-mediated knockout of the high-affinity IL-2 receptor in primary human T cells using a bicistronic lentivirus vector. Gene Ther 5, 635–644.[CrossRef]
    [Google Scholar]
  44. Routledge, E. G., Gorman, S. D. & Clark, M. ( 1993; ). Reshaping antibodies for therapy. In Protein Engineering of Antibody Molecules for Prophylactic and Therapeutic Applications in Man. Edited by M. Clark. Cambridge: Cambridge University Press.
  45. Schouten, A., Roosien, J., Bakker, J. & Schots, A. ( 2002; ). Formation of disulfide bridges by a single-chain Fv antibody in the reducing ectopic environment of the plant cytosol. J Biol Chem 277, 19339–19345.[CrossRef]
    [Google Scholar]
  46. Shoji, I., Suzuki, T., Sato, M., Aizaki, H., Chiba, T., Matsuura, Y. & Miyamura, T. ( 1999; ). Internal processing of hepatitis C virus NS3 protein. Virology 254, 315–323.[CrossRef]
    [Google Scholar]
  47. Steinkuhler, C., Urbani, A., Tomei, L., Biasiol, G., Sardana, M., Bianchi, E., Pessi, A. & De Francesco, R. ( 1996; ). Activity of purified hepatitis C virus protease NS3 on peptide substrates. J Virol 70, 6694–6700.
    [Google Scholar]
  48. Suzich, J. A., Tamura, J. K., Palmer-Hill, F., Warrener, P., Grakoui, A., Rice, C. M., Feinstone, S. M. & Collett, M. S. ( 1993; ). Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes. J Virol 67, 6152–6158.
    [Google Scholar]
  49. Tessmann, K., Erhardt, A., Haussinger, D. & Heintges, T. ( 2002; ). Cloning and molecular characterization of human high affinity antibody fragments against Hepatitis C virus NS3 helicase. J Virol Methods 103, 75–88.[CrossRef]
    [Google Scholar]
  50. Tomei, L., Failla, C., Santolini, E., De Francesco, R. & La Monica, N. ( 1993; ). NS3 is a serine protease required for processing of hepatitis C virus polyprotein. J Virol 67, 4017–4026.
    [Google Scholar]
  51. Wardell, A. D., Errington, W., Ciaramella, G., Merson, J. & McGarvey, M. J. ( 1999; ). Characterization and mutational analysis of the helicase and NTPase activities of hepatitis C virus full-length NS3 protein. J Gen Virol 80, 701–709.
    [Google Scholar]
  52. Winter, G., Griffiths, A. D., Hawkins, R. E. & Hoogenboom, H. R. ( 1994; ). Making antibodies by phage display technology. Annu Rev Immunol 12, 433–455.[CrossRef]
    [Google Scholar]
  53. Wu, J., Nantz, M. H. & Zern, M. A. ( 2002; ). Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications. Front Biosci 7, D717–D725.[CrossRef]
    [Google Scholar]
  54. Yang, S. H., Lee, C. G., Song, M. K. & Sung, Y. C. ( 2000; ). Internal cleavage of hepatitis C virus NS3 protein is dependent on the activity of NS34A protease. Virology 268, 132–140.[CrossRef]
    [Google Scholar]
  55. Yao, N., Hesson, T., Cable, M., Hong, Z., Kwong, A. D., Le, H. V. & Weber, P. C. ( 1997; ). Structure of the hepatitis C virus RNA helicase domain. Nat Struct Biol 4, 463–467.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19299-0
Loading
/content/journal/jgv/10.1099/vir.0.19299-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error