1887

Abstract

The most abundantly transcribed HCMV gene (2.7) encodes a 2·7 kb polyadenylated RNA. Although the laboratory-adapted HCMV strains AD169 and Towne possess two copies of the 2.7 gene within an expanded sequence element, the low passage strain Toledo and all clinical isolates analysed contain only a single copy located within the U region. A 2.7 deletion mutant constructed based on a strain Toledo background was shown to replicate with kinetics comparable to those of the parental virus; the 2.7 gene is therefore not essential for virus replication . Sequencing the 2.7 gene from HCMV clinical isolates and the Toledo strain reveals that although the overall gene sequence is highly conserved (>99 %), the RL4 frame originally assigned in strain AD169 was disrupted in each of these viruses. Consequently, the 2.7 transcript does not encode any obvious translation product and thus may not function as an mRNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19298-0
2003-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/9/vir842511.html?itemId=/content/journal/jgv/10.1099/vir.0.19298-0&mimeType=html&fmt=ahah

References

  1. Akter P., Cunningham C., McSharry B. P. 8 other authors 2003; Two novel spliced genes in human cytomegalovirus. J Gen Virol 84:1117–1122
    [Google Scholar]
  2. Aono T., Kondo K., Miyoshi H., Tanaka-Taya K., Kondo M., Osugi Y., Hara J., Okada S., Yamanishi K. 1998; Monitoring of human cytomegalovirus infections in pediatric bone marrow transplant recipients by nucleic acid sequence-based amplification. J Infect Dis 178:1244–1249
    [Google Scholar]
  3. Bergamini G., Reschke M., Battista M. C., Boccuni M. C., Campanini F., Ripalti A., Landini M. P. 1998; The major open reading frame of the β 2.7 transcript of human cytomegalovirus: in vitro expression of a protein posttranscriptionally regulated by the 5′ region. J Virol 72:8425–8429
    [Google Scholar]
  4. Cha T. A., Tom E., Kemble G. W., Duke G. M., Mocarski E. S., Spaete R. R. 1996; Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol 70:78–83
    [Google Scholar]
  5. Chee M. S., Bankier A. T., Beck S. other authors 1990; Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154:125–169
    [Google Scholar]
  6. Dargan D. J., Jamieson F. E., MacLean J., Dolan A., Addison C., McGeoch D. J. 1997; The published DNA sequence of human cytomegalovirus strain AD169 lacks 929 base pairs affecting genes UL42 and UL43. J Virol 71:9833–9836
    [Google Scholar]
  7. Davison A. J., Dolan A., Akter P., Addison C., Dargan D. J., Alcendor D. J., McGeoch D. J., Hayward G. S. 2003; The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84:17–28
    [Google Scholar]
  8. Demarchi J. M. 1981; Human cytomegalovirus DNA: restriction enzyme cleavage maps and map locations for immediate-early, early and late RNAs. Virology 114:23–38
    [Google Scholar]
  9. DeMarchi J. M. 1984; The physical and transcriptional organization of the human cytomegalovirus genome. Birth Defects Orig Artic Ser 20:35–47
    [Google Scholar]
  10. Gawn J. M., Greaves R. F. 2002; Absence of IE1 p72 protein function during low-multiplicity infection by human cytomegalovirus results in a broad block to viral delayed-early gene expression. J Virol 76:4441–4455
    [Google Scholar]
  11. Geballe A. P., Spaete R. R., Mocarski E. S. 1986; A cis-acting element within the 5′ leader of a cytomegalovirus beta transcript determines kinetic class. Cell 46:865–872
    [Google Scholar]
  12. Goldmacher V. S., Bartle L. M., Skaletskaya A. 10 other authors 1999; A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A 96:12536–12541
    [Google Scholar]
  13. Greenaway P. J., Wilkinson G. W. 1987; Nucleotide sequence of the most abundantly transcribed early gene of human cytomegalovirus strain AD169. Virus Res 7:17–31
    [Google Scholar]
  14. Lord P. C., Rothschild C. B., DeRose R. T., Kilpatrick B. A. 1989; Human cytomegalovirus RNAs immunoprecipitated by multiple systemic lupus erythematosus antisera. J Gen Virol 70:2383–2396
    [Google Scholar]
  15. Lurain N. S., Kapell K. S., Huang D. D., Short J. A., Paintsil J., Winkfield E., Benedict C. A., Ware C. F., Bremer J. W. 1999; Human cytomegalovirus UL144 open reading frame: sequence hypervariability in low-passage clinical isolates. J Virol 73:10040–10050
    [Google Scholar]
  16. McDonough S. H., Spector D. H. 1983; Transcription in human fibroblasts permissively infected by human cytomegalovirus strain AD169. Virology 125:31–46
    [Google Scholar]
  17. McDonough S. H., Staprans S. I., Spector D. H. 1985; Analysis of the major transcripts encoded by the long repeat of human cytomegalovirus strain AD169. J Virol 53:711–718
    [Google Scholar]
  18. Mocarski E. S., Prichard M. N., Tan C. S., Brown J. M. 1997; Reassessing the organization of the UL42–UL43 region of the human cytomegalovirus strain AD169 genome. Virology 239:169–75
    [Google Scholar]
  19. Perng G. C., Jones C., Ciacci-Zanella J. 8 other authors 2000; Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287:1500–1503
    [Google Scholar]
  20. Phillips A. J., Tomasec P., Wang E. C., Wilkinson G. W., Borysiewicz L. K. 1998; Human cytomegalovirus infection downregulates expression of the cellular aminopeptidases CD10 and CD13. Virology 250:350–358
    [Google Scholar]
  21. Prichard M. N., Penfold M. E., Duke G. M., Spaete R. R., Kemble G. W. 2001; A review of genetic differences between limited and extensively passaged human cytomegalovirus strains. Rev Med Virol 11:191–200
    [Google Scholar]
  22. Sharp T. V., Schwemmle M., Jeffrey I., Laing K., Mellor H., Proud C. G., Hilse K., Clemens M. J. 1993; Comparative analysis of the regulation of the interferon-inducible protein kinase PKR by Epstein–Barr virus RNAs EBER-1 and EBER-2 and adenovirus VAI RNA. Nucleic Acids Res 21:4483–4490
    [Google Scholar]
  23. Spaete R. R., Mocarski E. S. 1985; Regulation of cytomegalovirus gene expression: alpha and beta promoters are trans activated by viral functions in permissive human fibroblasts. J Virol 56:135–143
    [Google Scholar]
  24. Spaete R. R., Mocarski E. S. 1987; Insertion and deletion mutagenesis of the human cytomegalovirus genome. Proc Natl Acad Sci U S A 84:7213–7217
    [Google Scholar]
  25. Wang E. C., McSharry B., Retiere C., Tomasec P., Williams S., Borysiewicz L. K., Braud V. M., Wilkinson G. W. 2002; UL40-mediated NK evasion during productive infection with human cytomegalovirus. Proc Natl Acad Sci U S A 99:7570–7575
    [Google Scholar]
  26. Wathen M. W., Stinski M. F. 1982; Temporal patterns of human cytomegalovirus transcription: mapping the viral RNAs synthesized at immediate early, early and late times after infection. J Virol 41:462–477
    [Google Scholar]
  27. Wu T. C., Lee W. A., Pizzorno M. C., Au W. C., Chan Y. J., Hruban R. H., Hutchins G. M., Hayward G. S. 1992; Localization of the human cytomegalovirus 2.7-kb major early beta-gene transcripts by RNA in situ hybridization in permissive and nonpermissive infections. Am J Pathol 141:1247–1154
    [Google Scholar]
  28. Zhong W., Ganem D. 1997; Characterization of ribonucleoprotein complexes containing an abundant polyadenylated nuclear RNA encoded by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8). J Virol 71:1207–1212
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19298-0
Loading
/content/journal/jgv/10.1099/vir.0.19298-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error