1887

Abstract

Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that spreads in the nervous system in functionally connected neurons. Determining how HSV-1 components are sorted in neurons is critical to elucidate the mechanisms of virus neuroinvasion. By using recombinant viruses expressing glycoprotein B (gB) tagged with green fluorescent protein (GFP), the subcellular localization of this envelope protein was visualized in infected hippocampal neurons in culture. Results obtained using a fully infectious recombinant virus containing GFP inserted into the ectodomain of gB support the view that capsids and gB are transported separately in neuron processes. Moreover, they show that during infection gB is sorted to the dendritic tree and the axons of polarized hippocampal neurons. However, GFP insertion into the cytoplasmic tail of gB impaired the maturation of the resulting fusion protein and caused its retention in the endoplasmic reticulum. The defective protein did not gain access to axons of infected neurons. These results suggest that the cytoplasmic tail of gB plays a role in maturation and transport and subsequently in axonal sorting in differentiated hippocampal neurons.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19279-0
2003-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/10/vir842613.html?itemId=/content/journal/jgv/10.1099/vir.0.19279-0&mimeType=html&fmt=ahah

References

  1. Baghian A., Huang L., Newman S., Jayachandra S., Kousoulas K. G. 1993; Truncation of the carboxy-terminal 28 amino acids of glycoprotein B specified by herpes simplex virus type 1 mutant amb1511–7 causes extensive cell fusion. J Virol 67:2396–2401
    [Google Scholar]
  2. Bradke F., Dotti C. G. 1998; Membrane traffic in polarized neurons. Biochim Biophys Acta 1404:245–258
    [Google Scholar]
  3. Butcher M., Raviprakash K., Ghosh H. P. 1990; Acid pH-induced fusion of cells by herpes simplex virus glycoproteins gB an gD. J Biol Chem 265:5862–5868
    [Google Scholar]
  4. Bzik D. J., Fox B. A., DeLuca N. A., Person S. 1984; Nucleotide sequence of a region of the herpes simplex virus type 1 gB glycoprotein gene: mutations affecting rate of virus entry and cell fusion. Virology 137:185–190
    [Google Scholar]
  5. Cai W. Z., Person S., Warner S. C., Zhou J. H., DeLuca N. A. 1987; Linker-insertion nonsense and restriction-site deletion mutations of the gB glycoprotein gene of herpes simplex virus type 1. J Virol 61:714–721
    [Google Scholar]
  6. Cai W. H., Gu B., Person S. 1988a; Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J Virol 62:2596–2604
    [Google Scholar]
  7. Cai W. Z., Person S., DebRoy C., Gu B. H. 1988b; Functional regions and structural features of the gB glycoprotein of herpes simplex virus type 1. An analysis of linker insertion mutants. J Mol Biol 201:575–588
    [Google Scholar]
  8. Cubitt A. B., Heim R., Adams S. R., Boyd A. E., Gross L. A., Tsien R. Y. 1995; Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455
    [Google Scholar]
  9. Desai P., Person S. 1998; Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid. J Virol 72:7563–7568
    [Google Scholar]
  10. Donnelly M., Elliott G. 2001; Fluorescent tagging of herpes simplex virus tegument protein VP13/14 in virus infection. J Virol 75:2575–2583
    [Google Scholar]
  11. Dotti C. G., Simons K. 1990; Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture. Cell 62:63–72
    [Google Scholar]
  12. Dotti C. G., Sullivan C. A., Banker G. A. 1988; The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454–1468
    [Google Scholar]
  13. Dotti C. G., Kartenbeck J., Simons K. 1993; Polarized distribution of the viral glycoproteins of vesicular stomatitis, fowl plague and Semliki Forest viruses in hippocampal neurons in culture: a light and electron microscopy study. Brain Res 610:141–147
    [Google Scholar]
  14. Echard A., Jollivet F., Martinez O., Lacapere J. J., Rousselet A., Janoueix-Lerosey I., Goud B. 1998; Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279:580–585
    [Google Scholar]
  15. Elliott G., O'Hare P. 1999; Live-cell analysis of a green fluorescent protein-tagged herpes simplex virus infection. J Virol 73:4110–4119
    [Google Scholar]
  16. Gilbert R., Ghosh K., Rasile L., Ghosh H. P. 1994; Membrane anchoring domain of herpes simplex virus glycoprotein gB is sufficient for nuclear envelope localization. J Virol 68:2272–2285
    [Google Scholar]
  17. Goslin K., Banker G. 1989; Experimental observations on the development of polarity by hippocampal neurons in culture. J Cell Biol 108:1507–1516
    [Google Scholar]
  18. Heineman T. C., Hall S. L. 2002; Role of the varicella-zoster virus gB cytoplasmic domain in gB transport and viral egress. J Virol 76:591–599
    [Google Scholar]
  19. Heineman T. C., Krudwig N., Hall S. L. 2000; Cytoplasmic domain signal sequences that mediate transport of varicella-zoster virus gB from the endoplasmic reticulum to the Golgi. J Virol 74:9421–9430
    [Google Scholar]
  20. Holland D. J., Miranda-Saksena M., Boadle R. A., Armati P., Cunningham A. L. 1999; Anterograde transport of herpes simplex virus proteins in axons of peripheral human fetal neurons: an immunoelectron microscopy study. J Virol 73:8503–8511
    [Google Scholar]
  21. Jareb M., Banker G. 1998; The polarized sorting of membrane proteins expressed in cultured hippocampal neurons using viral vectors. Neuron 20:855–867
    [Google Scholar]
  22. Laquerre S., Anderson D. B., Argnani R., Glorioso J. C. 1998; Herpes simplex virus type 1 glycoprotein B requires a cysteine residue at position 633 for folding, processing, and incorporation into mature infectious virus particles. J Virol 72:4940–4949
    [Google Scholar]
  23. Ledesma M. D., Simons K., Dotti C. G. 1998; Neuronal polarity: essential role of protein-lipid complexes in axonal sorting. Proc Natl Acad Sci U S A 95:3966–3971
    [Google Scholar]
  24. Mettenleiter T. C. 2002; Herpesvirus assembly and egress. J Virol 76:1537–1547
    [Google Scholar]
  25. Meyer G. A., Radsak K. D. 2000; Identification of a novel signal sequence that targets transmembrane proteins to the nuclear envelope inner membrane. J Biol Chem 275:3857–3866
    [Google Scholar]
  26. Miranda-Saksena M., Armati P., Boadle R. A., Holland D. J., Cunningham A. L. 2000; Anterograde transport of herpes simplex virus type 1 in cultured, dissociated human and rat dorsal root ganglion neurons. J Virol 74:1827–1839
    [Google Scholar]
  27. Mitchell B. M., Stevens J. G. 1996; Neuroinvasive properties of herpes simplex virus type 1 glycoprotein variants are controlled by the immune response. J Immunol 156:246–255
    [Google Scholar]
  28. Moriyoshi K., Richards L. J., Akazawa C., O'Leary D. D., Nakanishi S. 1996; Labeling neural cells using adenoviral gene transfer of membrane-targeted GFP. Neuron 16:255–260
    [Google Scholar]
  29. Navarro D., Qadri I., Pereira L. 1991; A mutation in the ectodomain of herpes simplex virus 1 glycoprotein B causes defective processing and retention in the endoplasmic reticulum. Virology 184:253–264
    [Google Scholar]
  30. Peeters B., de Wind N., Hooisma M., Wagenaar F., Gielkens A., Moormann R. 1992; Pseudorabies virus envelope glycoproteins gp50 and gII are essential for virus penetration, but only gII is involved in membrane fusion. J Virol 66:894–905
    [Google Scholar]
  31. Pellett P. E., Kousoulas K. G., Pereira L., Roizman B. 1985; Anatomy of the herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of the wild type and of monoclonal antibody-resistant mutants. J Virol 53:243–253
    [Google Scholar]
  32. Penfold M. E. T., Armati P., Cunningham A. L. 1994; Axonal transport of herpes simplex virions to epidermal cells: evidence for a specialized mode of virus transport and assembly. Proc Natl Acad Sci U S A 91:6529–6533
    [Google Scholar]
  33. Pereira L. 1994; Function of glycoprotein B homologues of the family herpesviridae. Infect Agents Dis 3:9–28
    [Google Scholar]
  34. Potel C., Kaelin K., Gautier I., Lebon P., Coppey J., Rozenberg F. 2002; Incorporation of green fluorescent protein into the essential envelope glycoprotein B of herpes simplex virus type 1. J Virol Methods 105:13–23
    [Google Scholar]
  35. Rasile L., Ghosh K., Raviprakash K., Ghosh H. P. 1993; Effects of deletions in the carboxy-terminal hydrophobic region of herpes simplex virus glycoprotein gB on intracellular transport and membrane anchoring. J Virol 67:4856–4866
    [Google Scholar]
  36. Raviprakash K., Rasile L., Ghosh K., Ghosh H. P. 1990; Shortened cytoplasmic domain affects intracellular transport but not nuclear localization of a viral glycoprotein. J Biol Chem 265:1777–1782
    [Google Scholar]
  37. Sivadon V., Lebon P., Rozenberg F. 1998; Variations of HSV-1 glycoprotein B in human herpes simplex encephalitis. J Neurovirol 4:106–114
    [Google Scholar]
  38. Smith G. A., Gross S. P., Enquist L. W. 2001; Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Proc Natl Acad Sci U S A 98:3466–3470
    [Google Scholar]
  39. Spear P. G. 1993; Membrane fusion induced by herpes simplex virus. In Viral Fusion Mechanisms pp  201–232 Edited by Bentz J. Ann Arbor, Michigan: CRC Press;
    [Google Scholar]
  40. Tomishima M. J., Smith G. A., Enquist L. W. 2001; Sorting and transport of alpha herpesviruses in axons. Traffic 2:429–436
    [Google Scholar]
  41. Tugizov S., Maidji E., Pereira L. 1996; Role of apical and basolateral membranes in replication of human cytomegalovirus in polarized retinal pigment epithelial cells. J Gen Virol 77:61–74
    [Google Scholar]
  42. West A. E., Neve R. L., Buckley K. M. 1997; Identification of a somatodendritic targeting signal in the cytoplasmic domain of the transferrin receptor. J Neurosci 17:6038–6047
    [Google Scholar]
  43. Whitley R. J., Gnann J. W. 2002; Viral encephalitis: familiar infections and emerging pathogens. Lancet 359:507–513
    [Google Scholar]
  44. Yamashita Y., Shimokata K., Mizuno S., Daikoku T., Tsurumi T., Nishiyama Y. 1996; Calnexin acts as a molecular chaperone during the folding of glycoprotein B of human cytomegalovirus. J Virol 70:2237–2246
    [Google Scholar]
  45. Yuhasz S. A., Stevens J. G. 1993; Glycoprotein B is a specific determinant of herpes simplex virus type 1 neuroinvasiveness. J Virol 67:5948–5954
    [Google Scholar]
  46. Zheng Z., Maidji E., Tugizov S., Pereira L. 1996; Mutations in the carboxyl-terminal hydrophobic sequence of human cytomegalovirus glycoprotein B alter transport and protein chaperone binding. J Virol 70:8029–8040
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19279-0
Loading
/content/journal/jgv/10.1099/vir.0.19279-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error