1887

Abstract

Recombination is increasingly seen as an important means of shaping genetic diversity in RNA viruses. However, observed recombination frequencies vary widely among those viruses studied to date, with only sporadic occurrences reported in RNA viruses with negative-sense genomes. To determine the extent of homologous recombination in negative-sense RNA viruses, phylogenetic analyses of 79 gene sequence alignments from 35 negative-sense RNA viruses (a total of 2154 sequences) were carried out. Powerful evidence was found for recombination, in the form of incongruent phylogenetic trees between different gene regions, in only five sequences from , and . This is the first report of recombination in these viruses. More tentative evidence for recombination, where conflicting phylogenetic trees were observed (but were without strong bootstrap support) and/or where putative recombinant regions were very short, was found in three alignments from La Crosse virus and . Finally, patterns of sequence variation compatible with the action of recombination, but not definitive evidence for this process, were observed in a further ten viruses: , , , , , , , , and . The possibility of recombination in these viruses should be investigated further. Overall, this study reveals that rates of homologous recombination in negative-sense RNA viruses are very much lower than those of mutation, with many viruses seemingly clonal on current data. Consequently, recombination rate is unlikely to be a trait that is set by natural selection to create advantageous or purge deleterious mutations.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19277-0
2003-10-01
2020-08-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/10/vir842691.html?itemId=/content/journal/jgv/10.1099/vir.0.19277-0&mimeType=html&fmt=ahah

References

  1. Aaziz R., Tepfer M.. 1999; Recombination in RNA viruses and in virus-resistant transgenic plants. J Gen Virol80:1339–1346
    [Google Scholar]
  2. Archer A. M., Rico-Hesse R.. 2002; High genetic divergence and recombination in arenaviruses from the Americas. Virology304:274–281
    [Google Scholar]
  3. Asikainen K., Hanninen T., Henttonen H.. 7 other authors 2000; Molecular evolution of puumala hantavirus in Fennoscandia: phylogenetic analysis of strains from two recolonization routes. Karelia and Denmark. J Gen Virol81:2833–2841
    [Google Scholar]
  4. Ball L. A.. 1997; Nodavirus RNA recombination. Semin Virol8:95–100
    [Google Scholar]
  5. Banner L. R., Lai M. M. C.. 1991; Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology185:441–445
    [Google Scholar]
  6. Boerlijst M. C., Bonhoeffer S., Nowak M. A.. 1996; Viral quasi-species and recombination. Proc R Soc Lond B Biol Sci263:1577–1584
    [Google Scholar]
  7. Bujarski J. J., Nagy P. D.. 1996; Different mechanisms of homologous and nonhomologous recombination in brome mosaic virus: role of RNA sequences and replicase proteins. Semin Virol7:363–372
    [Google Scholar]
  8. Burke D. S.. 1997; Recombination in HIV: an important viral evolutionary strategy. Emerg Infect Dis3:253–259
    [Google Scholar]
  9. Calain P., Roux L.. 1993; The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol67:4822–4830
    [Google Scholar]
  10. Calain P., Monroe M. C., Nichol S. T.. 1999; Ebola virus defective interfering particles and persistent infection. Virology262:114–128
    [Google Scholar]
  11. Chao L.. 1990; Fitness of RNA virus decreased by Muller's ratchet. Nature348:454–455
    [Google Scholar]
  12. Chao L.. 1994; Evolution of genetic exchange in RNA viruses. In The Evolutionary Biology of Viruses pp 233–250 Edited by Morse S. S.. New York: Raven Press;
    [Google Scholar]
  13. Charrel R. N., de Lamballerie X., Fulhorst C. F.. 2001; The Whitewater Arroyo virus: natural evidence for genetic recombination among Tacaribe serocomplex viruses (family Arenaviridae . Virology283:161–166
    [Google Scholar]
  14. Chetverin A. B.. 1997; Recombination in bacteriophage Q β its satellite RNAs: the in vivo and in vitro studies. Semin Virol8:121–129
    [Google Scholar]
  15. Conzelmann K.-K.. 1998; Nonsegmented negative-strand RNA viruses: genetics and manipulation of viral genomes. Annu Rev Genet32:123–162
    [Google Scholar]
  16. Cooper P. D., Steiner-Pryor S., Scotti P. D., Delong D.. 1974; On the nature of poliovirus genetic recombinants. J Gen Virol23:41–49
    [Google Scholar]
  17. Crotty S., Cameron C. E., Andino R.. 2001; RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci U S A98:6895–6900
    [Google Scholar]
  18. Danis C., Mabrouk T., Garzon S., Lemay G.. 1993; Establishment of persistent reovirus infection in SC1 cells: absence of protein synthesis inhibition and increased level of double-stranded RNA-activated protein kinase. Virus Res27:253–265
    [Google Scholar]
  19. Domingo E., Holland J. J.. 1997; RNA virus mutations for fitness and survival. Annu Rev Microbiol51:151–178
    [Google Scholar]
  20. Drake J. W., Holland J. J.. 1999; Mutation rates among RNA viruses. Proc Natl Acad Sci U S A96:13910–13913
    [Google Scholar]
  21. Duarte E., Clarke D., Moya A., Domingo E., Holland J. J.. 1992; Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet. Proc Natl Acad Sci U S A89:6015–6019
    [Google Scholar]
  22. Duhaut S. D., Dimmock N. J.. 1998; Heterologous protection of mice from a lethal human H1N1 influenza A virus infection by H3N8 equine defective interfering virus: comparison of defective RNA sequences isolated from the DI inoculum and mouse lung. Virology248:241–253
    [Google Scholar]
  23. Egelman E., Wu S., Amrein M., Portner A., Murti G.. 1989; The Sendai virus nucleocapsid exists in at least four different helical states. J Virol63:2233–2243
    [Google Scholar]
  24. Elena S. F., Moya A.. 1999; Rate of deleterious mutation and the distribution of its effects on fitness in vesicular stomatitis virus. J Evol Biol12:1078–1088
    [Google Scholar]
  25. Gibbs M. J., Armstrong J. S., Gibbs A. J.. 2001; Recombination in the hemagglutinin gene of the 1918 ‘Spanish flu’. Science293:1842–1845
    [Google Scholar]
  26. Gorman O. T., Bean W. J., Webster R. G.. 1992; Evolutionary processes in influenza viruses: divergence, rapid evolution, and stasis. Curr Top Microbiol Immunol176:75–97
    [Google Scholar]
  27. Haga T., Komase K., Yoshikawa Y., Yamanouchi K.. 1992; Molecular analysis of virus-producing and non-producing clones derived from a defective SSPE virus Yamagata-1 strain. Microbiol Immunol36:257–267
    [Google Scholar]
  28. Holmes E. C., Worobey M., Rambaut A.. 1999; Phylogenetic evidence for recombination in dengue virus. Mol Biol Evol16:405–409
    [Google Scholar]
  29. Hu W. S., Temin H. M.. 1990; Retroviral recombination and reverse transcription. Science250:1227–1233
    [Google Scholar]
  30. Jenkins G. M., Rambaut A., Pybus O. G., Holmes E. C.. 2002; Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol54:152–161
    [Google Scholar]
  31. Jennings P. A., Finch J. T., Winter G., Robertson J. S.. 1983; Does the higher order structure of the influenza virus ribonucleoprotein guide sequence rearrangements in influenza viral RNA?. Cell34:619–627
    [Google Scholar]
  32. Jung A., Maier R., Vartanian J. P., Bocharov G., Jung V., Fischer U., Meese E., Wain-Hobson S., Meyerhans A.. 2002; Multiply infected spleen cells in HIV patients. Nature418:144
    [Google Scholar]
  33. Kashiwagi Y., Takami T., Mori T., Nakayama T.. 1999; Sequence analysis of F, SH, and HN genes among mumps virus strains in Japan. Arch Virol144:593–599
    [Google Scholar]
  34. Klempa B., Schmidt H. A., Ulrich R., Kaluz S., Labuda M., Meisel H., Hjelle B., Krüger D. H.. 2003; Genetic interaction between distinct Dobrava hantavirus subtypes in Apodemus agrarius and A. flavicollis in nature. J Virol77:804–809
    [Google Scholar]
  35. Kolakofsky D., Pelet T., Garcin D., Hausmann S., Curran J., Roux L.. 1998; Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol72:891–899
    [Google Scholar]
  36. Lai M. M. C.. 1992; RNA recombination in animal and plant viruses. Microbiol Rev56:61–79
    [Google Scholar]
  37. Li T., Pattnaik A. K.. 1997; Replication signals in the genome of the vesicular stomatitis virus and its defective interfering particles: identification of a sequence element that enhances DI RNA replication. Virology232:248–259
    [Google Scholar]
  38. Liao C.-L., Lai M. M. C.. 1992; RNA recombination in a coronavirus: recombination between viral genomic RNA and transfected RNA fragments. J Virol66:6117–6124
    [Google Scholar]
  39. Loeb L. A., Essigmann J. M., Kazazi F., Zhang J., Rose K. D., Mullins J. I.. 1999; Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci U S A96:1492–1497
    [Google Scholar]
  40. Mindich L.. 1996; Heterologous recombination in the segmented dsRNA genome of bacteriophage ϕ 6. Semin Virol7:389–397
    [Google Scholar]
  41. Moutouh L., Corbeil J., Richman D. D.. 1996; Recombination leads to the rapid emergence of HIV-1 dually resistant mutants under selective drug pressure. Proc Natl Acad Sci U S A93:6106–6111
    [Google Scholar]
  42. Murphy S. K., Parks G. D.. 1997; Genome nucleotide lengths that are divisible by six are not essential but enhance replication of defective interfering RNAs of the paramyxovirus simian virus 5. Virology232:145–157
    [Google Scholar]
  43. Orlich M., Gottwald H., Rott R.. 1994; Nonhomologous recombination between the hemagglutinin gene and the nucleoprotein gene of an influenza virus. Virology204:462–465
    [Google Scholar]
  44. Posada D., Crandall K. A., Holmes E. C.. 2002; Recombination in evolutionary genomics. Annu Rev Genet36:75–97
    [Google Scholar]
  45. Pringle C. R., Parry J. E.. 1982; Measurement of surface antigen by specific bacterial adherence and scanning electron microscopy (SABA/SEM) in cells infected by vesiculovirus ts mutants. J Gen Virol59:207–211
    [Google Scholar]
  46. Rambaut A., Grassly N. C.. 1997; seq-gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci13:235–238
    [Google Scholar]
  47. Robertson D. L., Sharp P. M., McCutchan F. E., Hahn B. H.. 1995; Recombination in HIV-1. Nature374:124–126
    [Google Scholar]
  48. Roossinck M. J.. 1997; Mechanisms of plant virus evolution. Annu Rev Phytopathol35:191–209
    [Google Scholar]
  49. Sawyer S.. 1989; Statistical tests for detecting gene conversion. Mol Biol Evol6:526–538
    [Google Scholar]
  50. Seal B. S., Crawford J. M., Sellers H. S., Locke D. P., King D. J.. 2002; Nucleotide sequence analysis of the Newcastle disease virus nucleocapsid protein gene and phylogenetic relationships among the Paramyxoviridae . Virus Res83:119–129
    [Google Scholar]
  51. Sibold C., Meisel H., Krüger D. H., Labuda M., Lysy J., Kozuch O., Pejcoch M., Vaheri A., Plyusnin A.. 1999; Recombination in Tula hantavirus evolution: analysis of genetic lineages from Slovakia. J Virol73:667–675
    [Google Scholar]
  52. Sierra S., Dávila M., Lowenstein P. R., Domingo E.. 2000; Response of foot-and-mouth disease virus to increased mutagenesis: influence of viral load and fitness in loss of infectivity. J Virol74:8316–8323
    [Google Scholar]
  53. Simon A. E., Bujarski J. J.. 1994; RNA–RNA recombination and evolution in virus-infected plants. Annu Rev Phytopath32:337–362
    [Google Scholar]
  54. Simon K. O., Cardamone J. J. Jr, Whitaker-Dowling P. A., Youngner J. S., Widnell C. C.. 1990; Cellular mechanisms in the superinfection exclusion of vesicular stomatitis virus. Virology177:375–379
    [Google Scholar]
  55. Sironen T., Vaheri A., Plyusnin A.. 2001; Molecular evolution of Puumala hantavirus. J Virol75:11803–11810
    [Google Scholar]
  56. Strauss J. H., Strauss E. G.. 1997; Recombination in alphaviruses. Semin Virol8:85–94
    [Google Scholar]
  57. Swofford D. L.. 2002; paup*: Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  58. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882
    [Google Scholar]
  59. Vapalahti O., Kallio-Kokko H., Salonen E. M., Brummer-Korvenkontio M., Vaheri A.. 1992; Cloning and sequencing of Puumala virus Sotkamo strain S and M RNA segments: evidence for strain variation in hantaviruses and expression of the nucleocapsid protein. J Gen Virol73:829–838
    [Google Scholar]
  60. Worobey M.. 2001; A novel approach to detecting and measuring recombination: new insights into evolution in viruses, bacteria, and mitochondria. Mol Biol Evol18:1425–1434
    [Google Scholar]
  61. Worobey M., Holmes E. C.. 1999; Evolutionary aspects of recombination in RNA viruses. J Gen Virol80:2535–2543
    [Google Scholar]
  62. Worobey M., Rambaut A., Holmes E. C.. 1999; Widespread intra-serotype recombination in natural populations of dengue virus. Proc Natl Acad Sci U S A96:7352–7357
    [Google Scholar]
  63. Worobey M., Rambaut A., Pybus O. G., Robertson D. L.. 2002; Questioning the evidence for genetic recombination in the 1918 ‘Spanish flu’ virus. Science296:211
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19277-0
Loading
/content/journal/jgv/10.1099/vir.0.19277-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error