1887

Abstract

Infection with (VV) produces several distinct virions called intracellular mature virus (IMV), intracellular enveloped virus (IEV), cell-associated enveloped virus (CEV) and extracellular enveloped virus (EEV). In this report, we have investigated how incoming virus cores derived from IMV are transported within the cell. To do this, recombinant VVs (vA5L-EGFP-N and vA5L-EGFP-C) were generated in which the A5L virus core protein was fused with the enhanced green fluorescent protein (EGFP) at the N or C terminus. These viruses were viable, induced formation of actin tails and had a plaque size similar to wild-type. Immunoblotting showed the A5L-EGFP fusion protein was present in IMV particles and immunoelectron microscopy showed that the fusion protein was incorporated into VV cores. IMV made by vA5L-EGFP-N were used to follow the location and movement of cores after infection of PtK cells. Confocal microscopy showed that virus cores were stained with anti-core antibody only after they had entered the cell and, once intracellular, were negative for the IMV surface protein D8L. These cores co-localized with microtubules and moved in a stop–start manner with an average speed of 51·8 (±3·9) μm min, consistent with microtubular movement. Treatment of cells with nocodazole or colchicine inhibited core movement, but addition of cytochalasin D did not. These data show that VV cores derived from IMV use microtubules for intracellular transport after entry.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19271-0
2003-09-01
2020-07-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/9/vir842443.html?itemId=/content/journal/jgv/10.1099/vir.0.19271-0&mimeType=html&fmt=ahah

References

  1. Blasco R., Moss B.. 1991; Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-Dalton outer envelope protein. J Virol65:5910–5920
    [Google Scholar]
  2. Cudmore S., Cossart P., Griffiths G., Way M.. 1995; Actin-based motility of vaccinia virus. Nature378:636–638
    [Google Scholar]
  3. Cudmore S., Reckmann I., Griffiths G., Way M.. 1996a; Vaccinia virus: a model system for actin–membrane interactions. J Cell Sci109:1739–1747
    [Google Scholar]
  4. Cudmore S., Blasco R., Vincentelli R., Esteban M., Sodeik B., Griffiths G., Krijnse Locker J.. 1996b; A vaccinia virus core protein, p39, is membrane associated. J Virol70:6909–6921
    [Google Scholar]
  5. Dales S., Siminovitch L.. 1961; The development of vaccinia virus in Earles L strain cells as examined by electron microscopy. J Biophys Biochem Cytol10:475–503
    [Google Scholar]
  6. Demkowicz W. E., Maa J. S., Esteban M.. 1992; Identification and characterization of vaccinia virus genes encoding proteins that are highly antigenic in animals and are immunodominant in vaccinated humans. J Virol66:386–398
    [Google Scholar]
  7. Falkner F. G., Moss B.. 1990; Transient dominant selection of recombinant vaccinia viruses. J Virol64:3108–3111
    [Google Scholar]
  8. Frischknecht F., Moreau V., Röttger S., Gonfloni S., Rechmann I., Superti-Furga G., Way M.. 1999; Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature401:926–929
    [Google Scholar]
  9. Geada M. M., Galindo I., Lorenzo M. M., Perdiguero B., Blasco R.. 2001; Movements of vaccinia virus intracellular enveloped virions with GFP tagged to the F13L envelope protein. J Gen Virol82:2747–2760
    [Google Scholar]
  10. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E.. 1990; The complete DNA sequence of vaccinia virus. Virology179:247–266
    [Google Scholar]
  11. Griffiths G., Roos N., Schleich S., Krijnse Locker J.. 2001a; Structure and assembly of intracellular mature vaccinia virus: thin-section analyses. J Virol75:11056–11070
    [Google Scholar]
  12. Griffiths G., Wepf R., Wendt T., Krijnse Locker J., Cyrklaff M., Roos N.. 2001b; Structure and assembly of intracellular mature vaccinia virus: isolated-particle analysis. J Virol75:11034–11055
    [Google Scholar]
  13. Hollinshead M., Vanderplasschen A., Smith G. L., Vaux D. J.. 1999; Vaccinia virus intracellular mature virions contain only one lipid membrane. J Virol73:1503–1517
    [Google Scholar]
  14. Hollinshead M., Rodger G., van Eijl H., Hollinshead R., Law M., Vaux D. T., Smith G. L.. 2001; Vaccinia virus utilizes microtubules for movement to the cell surface. J Cell Biol154:389–402
    [Google Scholar]
  15. Horton R. M., Cai Z. L., Ho S. N., Pease L. R.. 1989; Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques8:528–535
    [Google Scholar]
  16. Hughes S. J., Johnston L. H., de Carlos A., Smith G. L.. 1991; Vaccinia virus encodes an active thymidylate kinase that complements a cdc8 mutant of Saccharomyces cerevisiae . J Biol Chem266:20103–20109
    [Google Scholar]
  17. Husain M., Moss B.. 2001; Vaccinia virus F13L protein with a conserved phospholipase catalytic motif induces colocalization of the B5R envelope glycoprotein in post-Golgi vesicles. J Virol75:7528–7542
    [Google Scholar]
  18. Ichihashi Y.. 1996; Extracellular enveloped vaccinia virus escapes neutralization. Virology217:478–485
    [Google Scholar]
  19. Katz E., Wolffe E., Moss B.. 2002; Identification of second-site mutations that enhance release and spread of vaccinia virus. J Virol76:11637–11644
    [Google Scholar]
  20. Krauss O., Hollinshead R., Hollinshead M., Smith G. L.. 2002; An investigation of the incorporation of cellular antigens in vaccinia virus particles. J Gen Virol83:2347–2359
    [Google Scholar]
  21. Krijnse Locker J., Kuehn A., Schleich S., Rutter G., Hohenberg H., Wepf R., Griffiths G.. 2000; Entry of the two infectious forms of vaccinia virus at the plasma membrane is signaling-dependent for the IMV but not the EEV. Mol Biol Cell11:2497–2511
    [Google Scholar]
  22. Law M., Hollinshead R., Smith G. L.. 2002; Antibody-sensitive and antibody-resistant cell-to-cell spread of vaccinia virus: role of the A33R protein in antibody-resistant spread. J Gen Virol83:209–222
    [Google Scholar]
  23. Maa J. S., Esteban M.. 1987; Structural and functional studies of a 39,000-Mr immunodominant protein of vaccinia virus. J Virol61:3910–3919
    [Google Scholar]
  24. Mackett M., Smith G. L., Moss B.. 1985; The construction and characterization of vaccinia virus recombinants expressing foreign genes. In DNA Cloning: a Practical Approach pp 191–211 Edited by Glover D. M.. Oxford: IRL Press;
    [Google Scholar]
  25. McDonald D., Vodicka M. A., Lucero G., Svitkina T. M., Borisy G. G., Emerman M., Hope T. J.. 2002; Visualization of the intracellular behavior of HIV in living cells. J Cell Biol159:441–452
    [Google Scholar]
  26. Mallardo M., Schleich S., Krijnse Locker J.. 2001; Microtubule-dependent organization of vaccinia virus core-derived early mRNAs into distinct cytoplasmic structures. Mol Biol Cell12:3875–3891
    [Google Scholar]
  27. Morgan C.. 1976; Vaccinia virus reexamined: development and release. Virology73:43–58
    [Google Scholar]
  28. Moss B.. 2001; Poxviridae : the viruses and their replication. In Fields Virology , 4th edn. pp 2849–2883 Edited by Knipe D. M., Howley P. M.. Philadelphia: Lippincott Williams & WIlkins;
    [Google Scholar]
  29. Parkinson J. E., Smith G. L.. 1994; Vaccinia virus gene A36R encodes a Mr 43–50 K protein on the surface of extracellular enveloped virus. Virology204:376–390
    [Google Scholar]
  30. Pedersen K., Snijder E. J., Schleich S., Roos N., Griffiths G., Krijnse Locker J.. 2000; Characterization of vaccinia virus intracellular cores: implications for viral uncoating and core structure. J Virol74:3525–3536
    [Google Scholar]
  31. Ploubidou A., Moreau V., Ashman K., Reckmann I., Gonzalez C., Way M.. 2000; Vaccinia virus infection disrupts microtubule organization and centrosome function. EMBO J19:3932–3944
    [Google Scholar]
  32. Rietdorf J., Ploubidou A., Reckmann I., Holmstrom A., Frischknecht F., Zettl M., Zimmermann T., Way M.. 2001; Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat Cell Biol3:992–1000
    [Google Scholar]
  33. Risco C., Rodriguez J. R., Lopez-Iglesias C., Carrascosa J. L., Esteban M., Rodriguez D.. 2002; Endoplasmic reticulum-Golgi intermediate compartment membranes and vimentin filaments participate in vaccinia virus assembly. J Virol76:1839–1855
    [Google Scholar]
  34. Rodger G., Smith G. L.. 2002; Replacing the SCR domains of vaccinia virus protein B5R with EGFP causes a reduction in plaque size and actin tail formation but enveloped virions are still transported to the cell surface. J Gen Virol83:323–332
    [Google Scholar]
  35. Rodriguez J. F., Smith G. L.. 1990; IPTG-dependent vaccinia virus: identification of a virus protein enabling virion envelopment by Golgi membrane and egress. Nucleic Acids Res18:5347–5351
    [Google Scholar]
  36. Sanderson C. M., Frischknecht F., Way M., Hollinshead M., Smith G. L.. 1998; Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell–cell fusion. J Gen Virol79:1415–1425
    [Google Scholar]
  37. Sanderson C. M., Hollinshead M., Smith G. L.. 2000; The vaccinia virus A27L protein is needed for the microtubule-dependent transport of intracellular mature virus particles. J Gen Virol81:47–58
    [Google Scholar]
  38. Smith G. L., Vanderplasschen A., Law M.. 2002; The formation and function of extracellular enveloped vaccinia virus. J Gen Virol83:2915–2931
    [Google Scholar]
  39. Sodeik B.. 2000; Mechanisms of viral transport in the cytoplasm. Trends Microbiol8:465–472
    [Google Scholar]
  40. Sodeik B., Doms R. W., Ericsson M., Hiller G., Machamer C. E., van't Hof W., van Meer G., Moss B., Griffiths G.. 1993; Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. J Cell Biol121:521–541
    [Google Scholar]
  41. Sodeik B., Ebersold M. W., Helenius A.. 1997; Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol136:1007–1021
    [Google Scholar]
  42. Suomalainen M., Nakano M., Keller S., Boucke K., Stidwill R. P., Greber U. F.. 1999; Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J Cell Biol144:657–672
    [Google Scholar]
  43. Towbin H., Staehelin T., Gordon J.. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A76:4350–4354
    [Google Scholar]
  44. Vanderplasschen A., Smith G. L.. 1997; A novel virus binding assay using confocal microscopy: demonstration that the intracellular and extracellular vaccinia virions bind to different cellular receptors. J Virol71:4032–4041
    [Google Scholar]
  45. Vanderplasschen A., Hollinshead M., Smith G. L.. 1998; Intracellular and extracellular vaccinia virions enter cells by different mechanisms. J Gen Virol79:877–887
    [Google Scholar]
  46. van Eijl H., Hollinshead M., Smith G. L.. 2000; The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped particles. Virology271:26–36
    [Google Scholar]
  47. van Eijl H., Hollinshead M., Rodger G., Zhang W.-H., Smith G. L.. 2002; The vaccinia virus F12L is associated with intracellular enveloped virus particles and is required for their egress to the cell surface. J Gen Virol83:195–207
    [Google Scholar]
  48. Ward B. M., Moss B.. 2000; Golgi network targeting and plasma membrane internalization signals in vaccinia virus B5R envelope protein. J Virol74:3771–3780
    [Google Scholar]
  49. Ward B. M., Moss B.. 2001a; Visualization of intracellular movement of vaccinia virus virions containing a green fluorescent protein-B5R membrane protein chimera. J Virol75:4802–4813
    [Google Scholar]
  50. Ward B. M., Moss B.. 2001b; Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails. J Virol75:11651–11663
    [Google Scholar]
  51. Williams O., Wolffe E. J., Weisberg A. S., Merchlinsky M.. 1999; Vaccinia virus WR gene A5L is required for morphogenesis of mature virions. J Virol73:4590–4599
    [Google Scholar]
  52. Wolffe E. J., Weisberg A. S., Moss B.. 1998; Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread. Virology244:20–26
    [Google Scholar]
  53. Zhang W.-H., Wilcock D., Smith G. L.. 2000; The vaccinia virus F12L protein is required for actin tail formation, normal plaque size and virulence. J Virol74:11663–11670
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19271-0
Loading
/content/journal/jgv/10.1099/vir.0.19271-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error