1887

Abstract

nucleopolyhedrovirus (AcMNPV), the type member of the virus family , infects pest insects and has been the subject of many studies for its development as a biopesticide. It is also the virus upon which most of the commercial baculovirus protein expression systems are based. AcMNPV infection of cultured host (Sf9) cells can induce a number of alterations of host cell properties including altering the cellular cytoskeleton, an arrest of the cell cycle in G/M, and the global shutoff of host protein translation. Additionally, several cellular transcripts have been shown to be down-regulated following AcMNPV infection. In this study, we take a differential display approach to address whether a global down-regulation of Sf9 host transcripts occurs at late times of infection. Additionally, we also use this approach to search for host mRNAs which are up-regulated at early times of infection, and may be important for facilitating baculovirus infection. From these experiments we can confirm a global down-regulation of Sf9 mRNA levels at late times of infection. We also found that up-regulation of individual host gene RNA levels at early times of infection did not occur frequently. One host transcript which was found to be transiently up-regulated as a result of AcMNPV infection was an Sf9 Hsc70 gene. Hsc70 proteins have been shown to play a vital role in the life-cycle of other large DNA viruses, which suggests that this protein is also important for baculovirus infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19270-0
2003-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/11/vir843029.html?itemId=/content/journal/jgv/10.1099/vir.0.19270-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Ayres M. D., Howard S. C., Kuzio J., Lopez-Ferber M., Possee R. D. 1994; The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202:586–605
    [Google Scholar]
  3. Birnbaum M. J., Clem R. J., Miller L. K. 1994; An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol 68:2521–2528
    [Google Scholar]
  4. Braunagel S. C., Parr R., Belyavskyi M., Summers M. D. 1998; Autographa californica nucleopolyhedrovirus infection results in Sf9 cell cycle arrest at G2/M phase. Virology 244:195–211
    [Google Scholar]
  5. Brockhaus K., Plaza S., Pintel D. J., Rommelaere J., Salome N. 1996; Nonstructural proteins NS2 of minute virus of mice associate in vivo with 14-3-3 protein family members. J Virol 70:7527–7534
    [Google Scholar]
  6. Carstens E. B., Tija S. T., Doerfler W. 1979; Infection of Spodoptera frugiperda cells with Autographa californica nuclear polyhedrosis virus. I. Synthesis of intracellular proteins after virus infection. Virology 99:386–396
    [Google Scholar]
  7. Charlton C. A., Volkman L. E. 1993; Penetration of Autographa californica nuclear polyhedrosis virus nucleocapsids into IPLB Sf 21 cells induces actin cable formation. Virology 197:245–254
    [Google Scholar]
  8. Clem R. J., Miller L. K. 1993; Apoptosis reduces both the in vitro replication and the in vivo infectivity of a baculovirus. J Virol 67:3730–3738
    [Google Scholar]
  9. Cripe T. P., Delos S. E., Estes P. A., Garcea R. L. 1995; In vivo and in vitro association of hsc70 with polyomavirus capsid proteins. J Virol 69:7807–7813
    [Google Scholar]
  10. Fang D., Haraguchi Y., Jinno A., Soda Y., Shimizu N., Hoshino H. 1999; Heat shock cognate protein 70 is a cell fusion-enhancing factor but not an entry factor for human T-cell lymphotropic virus type I. Biochem Biophys Res Commun 261:357–363
    [Google Scholar]
  11. Fenwick M. L., McMenamin M. M. 1984; Early virion-associated suppression of cellular protein synthesis by herpes simplex virus is accompanied by inactivation of mRNA. J Gen Virol 65:1225–1228
    [Google Scholar]
  12. Gower T. L., Peeples M. E., Collins P. L., Graham B. S. 2001; RhoA is activated during respiratory syncytial virus infection. Virology 283:188–196
    [Google Scholar]
  13. Guarino L. A., Xu B., Jin J., Dong W. 1998; A virus-encoded RNA polymerase purified from baculovirus-infected cells. J Virol 72:7985–7991
    [Google Scholar]
  14. Guerrero C. A., Bouyssounade D., Zarate S., Isa P., Lopez T., Espinosa R., Romero P., Mendez E., Lopez S., Arias C. F. 2002; Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 76:4096–4102
    [Google Scholar]
  15. Hardy W. R., Sandri-Goldin R. M. 1994; Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J Virol 68:7790–7799
    [Google Scholar]
  16. Hohfeld J. 1998; Regulation of the heat shock conjugate Hsc70 in the mammalian cell: the characterization of the anti-apoptotic protein BAG-1 provides novel insights. Biol Chem 379:269–274
    [Google Scholar]
  17. Ikeda M., Kobayashi M. 1999; Cell-cycle perturbation in Sf9 cells infected with Autographa californica nucleopolyhedrovirus. Virology 258:176–188
    [Google Scholar]
  18. Krijnse Locker J., Kuehn A., Schleich S., Rutter G., Hohenberg H., Wepf R., Griffiths G. 2000; Entry of the two infectious forms of vaccinia virus at the plasma membane is signaling-dependent for the IMV but not the EEV. Mol Biol Cell 11:2497–2511
    [Google Scholar]
  19. Landais I., Pommet M. J., Mita K., Nohata J., Gimenez S., Fournier P., Devauchelle G., Duonor-Cerutti M., Ogliastro M. 2001; Characterization of the cDNA encoding the 90 kDa heat-shock protein in the lepidoptera Bombyx mori and Spodoptera frugiperda . Gene 271:223–231
    [Google Scholar]
  20. Lanier L. M., Volkman L. E. 1998; Actin binding and nucleation by Autographa california M nucleopolyhedrovirus. Virology 243:167–177
    [Google Scholar]
  21. Lanier L. M., Slack J. M., Volkman L. E. 1996; Actin binding and proteolysis by the baculovirus AcMNPV: the role of virion-associated V-CATH. Virology 216:380–388
    [Google Scholar]
  22. Lee H. H., Miller L. K. 1978; Isolation of genotypic variants of Autographa californica nuclear polyhedrosis virus. J Virol 27:754–767
    [Google Scholar]
  23. Liang P., Pardee A. B. 1993; Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–970
    [Google Scholar]
  24. Li E., Stupack D., Bokoch G. M., Nemerow G. R. 1998; Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J Virol 72:8806–8812
    [Google Scholar]
  25. Miller L. K. 1997 The Baculoviruses New York: Plenum Press;
    [Google Scholar]
  26. Okano K., Shimada T., Mita K., Maeda S. 2001; Comparative expressed-sequence-tag analysis of differential gene expression profiles in BmNPV-infected BmN cells. Virology 282:348–356
    [Google Scholar]
  27. Ooi B. G., Miller L. K. 1988; Regulation of host RNA levels during baculovirus infection. Virology 166:515–523
    [Google Scholar]
  28. O'Reilly D. R., Miller L. K., Luckow V. A. 1992 Baculovirus Expression Vectors: a Laboratory Manual New York: W. H. Freeman;
    [Google Scholar]
  29. Oroskar A. A., Read G. S. 1989; Control of mRNA stability by the virion host shutoff function of herpes simplex virus. J Virol 63:1897–1906
    [Google Scholar]
  30. Pallas D. C., Fu H., Haehnel L. C., Weller W., Collier R. J., Roberts T. M. 1994; Association of polyomavirus middle tumor antigen with 14-3-3 proteins. Science 265:535–537
    [Google Scholar]
  31. Prange R., Werr M., Loffler-Mary H. 1999; Chaperones involved in hepatitis B virus morphogenesis. Biol Chem 380:305–314
    [Google Scholar]
  32. Quadt I., Mainz D., Mans R., Kremer A., Knebel-Morsdorf D. 2002; Baculovirus infection raises the level of TATA-binding protein that colocalizes with viral DNA replication sites. J Virol 76:11123–11127
    [Google Scholar]
  33. Roncarati R., Knebel-Morsdorf D. 1997; Identification of the early actin-rearrangement-inducing factor gene, arif-1 , from Autographa californica multicapsid nuclear polyhedrosis virus. J Virol 71:7933–7941
    [Google Scholar]
  34. Sagara Y., Ishida C., Inoue Y., Shiraki H., Maeda Y. 1998; 71-kilodalton heat shock cognate protein acts as a cellular receptor for syncytium formation induced by human T-cell lymphotropic virus type 1. J Virol 72:535–541
    [Google Scholar]
  35. Sagara Y., Inoue Y., Kojima E., Ishida C., Shiraki H., Maeda Y. 2001; Phosphatidylglycerol participates in syncytium formation induced by HTLV type 1-bearing cells. AIDS Res Hum Retroviruses 17:125–135
    [Google Scholar]
  36. Sainis I., Angelidis C., Pagoulatos G., Lazaridis I. 1994; The hsc70 gene which is slightly induced by heat is the main virus inducible member of the hsp70 gene family. FEBS Lett 355:282–286
    [Google Scholar]
  37. Sainis L., Angelidis C., Pagoulatos G. N., Lazaridis L. 2000; HSC70 interactions with SV40 viral proteins differ between permissive and nonpermissive mammalian cells. Cell Stress Chaperones 5:132–138
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Saphire A. C., Guan T., Schirmer E. C., Nemerow G. R., Gerace L. 2000; Nuclear import of adenovirus DNA in vitro involves the nuclear protein import pathway and hsc70. J Biol Chem 275:4298–4304
    [Google Scholar]
  40. Schek N., Bachenheimer S. L. 1985; Degradation of cellular mRNAs induced by a virion-associated factor during herpes simplex virus infection of Vero cells. J Virol 55:601–610
    [Google Scholar]
  41. Strom T., Frenkel N. 1987; Effects of herpes simplex virus on mRNA stability. J Virol 61:2198–2207
    [Google Scholar]
  42. Sullivan C. S., Pipas J. M. 2001; The virus–chaperone connection. Virology 287:1–8
    [Google Scholar]
  43. Tomalski M. D., Wu J. G., Miller L. K. 1988; The location, sequence, transcription, and regulation of a baculovirus DNA polymerase gene. Virology 167:591–600
    [Google Scholar]
  44. Van Oers M. M., Van Marwijk M., Kwa M. S., Vlak J. M., Thomas A. A. 1999; Cloning and analysis of cDNAs encoding the hypusine-containing protein eIF5A of two lepidopteran insect species. Insect Mol Biol 8:531–538
    [Google Scholar]
  45. Van Oers M. M., Van der Veken L. T., Vlak J. M., Thomas A. A. 2001; Effect of baculovirus infection on the mRNA and protein levels of the Spodoptera frugiperda eukaryotic initiation factor 4E. Insect Mol Biol 10:255–264
    [Google Scholar]
  46. Vaughn J. L., Goodwin R. H., Tompkins G. J., McCawley P. 1977; The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 13:13–17
    [Google Scholar]
  47. Wang L., Zhang H., Solski P. A., Hart M. J., Der C. J., Su L. 2000; Modulation of HIV-1 replication by a novel RhoA effector activity. J Immunol 164:5369–5374
    [Google Scholar]
  48. Wei N., Volkman L. E. 1992; Hyperexpression of baculovirus polyhedrin and p10 is inversely correlated with actin synthesis. Virology 191:42–48
    [Google Scholar]
  49. Yaffe M. B. 2002; How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513:53–57
    [Google Scholar]
  50. Zimmermann R. 1998; The role of molecular chaperones in protein transport into the mammalian endoplasmic reticulum. Biol Chem 379:275–282
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19270-0
Loading
/content/journal/jgv/10.1099/vir.0.19270-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error