1887

Abstract

nucleopolyhedrovirus (AcMNPV), the type member of the virus family , infects pest insects and has been the subject of many studies for its development as a biopesticide. It is also the virus upon which most of the commercial baculovirus protein expression systems are based. AcMNPV infection of cultured host (Sf9) cells can induce a number of alterations of host cell properties including altering the cellular cytoskeleton, an arrest of the cell cycle in G/M, and the global shutoff of host protein translation. Additionally, several cellular transcripts have been shown to be down-regulated following AcMNPV infection. In this study, we take a differential display approach to address whether a global down-regulation of Sf9 host transcripts occurs at late times of infection. Additionally, we also use this approach to search for host mRNAs which are up-regulated at early times of infection, and may be important for facilitating baculovirus infection. From these experiments we can confirm a global down-regulation of Sf9 mRNA levels at late times of infection. We also found that up-regulation of individual host gene RNA levels at early times of infection did not occur frequently. One host transcript which was found to be transiently up-regulated as a result of AcMNPV infection was an Sf9 Hsc70 gene. Hsc70 proteins have been shown to play a vital role in the life-cycle of other large DNA viruses, which suggests that this protein is also important for baculovirus infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19270-0
2003-11-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/11/vir843029.html?itemId=/content/journal/jgv/10.1099/vir.0.19270-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Ayres, M. D., Howard, S. C., Kuzio, J., Lopez-Ferber, M. & Possee, R. D. ( 1994; ). The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202, 586–605.[CrossRef]
    [Google Scholar]
  3. Birnbaum, M. J., Clem, R. J. & Miller, L. K. ( 1994; ). An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol 68, 2521–2528.
    [Google Scholar]
  4. Braunagel, S. C., Parr, R., Belyavskyi, M. & Summers, M. D. ( 1998; ). Autographa californica nucleopolyhedrovirus infection results in Sf9 cell cycle arrest at G2/M phase. Virology 244, 195–211.[CrossRef]
    [Google Scholar]
  5. Brockhaus, K., Plaza, S., Pintel, D. J., Rommelaere, J. & Salome, N. ( 1996; ). Nonstructural proteins NS2 of minute virus of mice associate in vivo with 14-3-3 protein family members. J Virol 70, 7527–7534.
    [Google Scholar]
  6. Carstens, E. B., Tija, S. T. & Doerfler, W. ( 1979; ). Infection of Spodoptera frugiperda cells with Autographa californica nuclear polyhedrosis virus. I. Synthesis of intracellular proteins after virus infection. Virology 99, 386–396.[CrossRef]
    [Google Scholar]
  7. Charlton, C. A. & Volkman, L. E. ( 1993; ). Penetration of Autographa californica nuclear polyhedrosis virus nucleocapsids into IPLB Sf 21 cells induces actin cable formation. Virology 197, 245–254.[CrossRef]
    [Google Scholar]
  8. Clem, R. J. & Miller, L. K. ( 1993; ). Apoptosis reduces both the in vitro replication and the in vivo infectivity of a baculovirus. J Virol 67, 3730–3738.
    [Google Scholar]
  9. Cripe, T. P., Delos, S. E., Estes, P. A. & Garcea, R. L. ( 1995; ). In vivo and in vitro association of hsc70 with polyomavirus capsid proteins. J Virol 69, 7807–7813.
    [Google Scholar]
  10. Fang, D., Haraguchi, Y., Jinno, A., Soda, Y., Shimizu, N. & Hoshino, H. ( 1999; ). Heat shock cognate protein 70 is a cell fusion-enhancing factor but not an entry factor for human T-cell lymphotropic virus type I. Biochem Biophys Res Commun 261, 357–363.[CrossRef]
    [Google Scholar]
  11. Fenwick, M. L. & McMenamin, M. M. ( 1984; ). Early virion-associated suppression of cellular protein synthesis by herpes simplex virus is accompanied by inactivation of mRNA. J Gen Virol 65, 1225–1228.[CrossRef]
    [Google Scholar]
  12. Gower, T. L., Peeples, M. E., Collins, P. L. & Graham, B. S. ( 2001; ). RhoA is activated during respiratory syncytial virus infection. Virology 283, 188–196.[CrossRef]
    [Google Scholar]
  13. Guarino, L. A., Xu, B., Jin, J. & Dong, W. ( 1998; ). A virus-encoded RNA polymerase purified from baculovirus-infected cells. J Virol 72, 7985–7991.
    [Google Scholar]
  14. Guerrero, C. A., Bouyssounade, D., Zarate, S., Isa, P., Lopez, T., Espinosa, R., Romero, P., Mendez, E., Lopez, S. & Arias, C. F. ( 2002; ). Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 76, 4096–4102.[CrossRef]
    [Google Scholar]
  15. Hardy, W. R. & Sandri-Goldin, R. M. ( 1994; ). Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J Virol 68, 7790–7799.
    [Google Scholar]
  16. Hohfeld, J. ( 1998; ). Regulation of the heat shock conjugate Hsc70 in the mammalian cell: the characterization of the anti-apoptotic protein BAG-1 provides novel insights. Biol Chem 379, 269–274.
    [Google Scholar]
  17. Ikeda, M. & Kobayashi, M. ( 1999; ). Cell-cycle perturbation in Sf9 cells infected with Autographa californica nucleopolyhedrovirus. Virology 258, 176–188.[CrossRef]
    [Google Scholar]
  18. Krijnse Locker, J., Kuehn, A., Schleich, S., Rutter, G., Hohenberg, H., Wepf, R. & Griffiths, G. ( 2000; ). Entry of the two infectious forms of vaccinia virus at the plasma membane is signaling-dependent for the IMV but not the EEV. Mol Biol Cell 11, 2497–2511.[CrossRef]
    [Google Scholar]
  19. Landais, I., Pommet, M. J., Mita, K., Nohata, J., Gimenez, S., Fournier, P., Devauchelle, G., Duonor-Cerutti, M. & Ogliastro, M. ( 2001; ). Characterization of the cDNA encoding the 90 kDa heat-shock protein in the lepidoptera Bombyx mori and Spodoptera frugiperda. Gene 271, 223–231.[CrossRef]
    [Google Scholar]
  20. Lanier, L. M. & Volkman, L. E. ( 1998; ). Actin binding and nucleation by Autographa california M nucleopolyhedrovirus. Virology 243, 167–177.[CrossRef]
    [Google Scholar]
  21. Lanier, L. M., Slack, J. M. & Volkman, L. E. ( 1996; ). Actin binding and proteolysis by the baculovirus AcMNPV: the role of virion-associated V-CATH. Virology 216, 380–388.[CrossRef]
    [Google Scholar]
  22. Lee, H. H. & Miller, L. K. ( 1978; ). Isolation of genotypic variants of Autographa californica nuclear polyhedrosis virus. J Virol 27, 754–767.
    [Google Scholar]
  23. Liang, P. & Pardee, A. B. ( 1993; ). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–970.
    [Google Scholar]
  24. Li, E., Stupack, D., Bokoch, G. M. & Nemerow, G. R. ( 1998; ). Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J Virol 72, 8806–8812.
    [Google Scholar]
  25. Miller, L. K. ( 1997; ). The Baculoviruses. New York: Plenum Press.
  26. Okano, K., Shimada, T., Mita, K. & Maeda, S. ( 2001; ). Comparative expressed-sequence-tag analysis of differential gene expression profiles in BmNPV-infected BmN cells. Virology 282, 348–356.[CrossRef]
    [Google Scholar]
  27. Ooi, B. G. & Miller, L. K. ( 1988; ). Regulation of host RNA levels during baculovirus infection. Virology 166, 515–523.[CrossRef]
    [Google Scholar]
  28. O'Reilly, D. R., Miller, L. K. & Luckow, V. A. ( 1992; ). Baculovirus Expression Vectors: a Laboratory Manual. New York: W. H. Freeman.
  29. Oroskar, A. A. & Read, G. S. ( 1989; ). Control of mRNA stability by the virion host shutoff function of herpes simplex virus. J Virol 63, 1897–1906.
    [Google Scholar]
  30. Pallas, D. C., Fu, H., Haehnel, L. C., Weller, W., Collier, R. J. & Roberts, T. M. ( 1994; ). Association of polyomavirus middle tumor antigen with 14-3-3 proteins. Science 265, 535–537.[CrossRef]
    [Google Scholar]
  31. Prange, R., Werr, M. & Loffler-Mary, H. ( 1999; ). Chaperones involved in hepatitis B virus morphogenesis. Biol Chem 380, 305–314.
    [Google Scholar]
  32. Quadt, I., Mainz, D., Mans, R., Kremer, A. & Knebel-Morsdorf, D. ( 2002; ). Baculovirus infection raises the level of TATA-binding protein that colocalizes with viral DNA replication sites. J Virol 76, 11123–11127.[CrossRef]
    [Google Scholar]
  33. Roncarati, R. & Knebel-Morsdorf, D. ( 1997; ). Identification of the early actin-rearrangement-inducing factor gene, arif-1, from Autographa californica multicapsid nuclear polyhedrosis virus. J Virol 71, 7933–7941.
    [Google Scholar]
  34. Sagara, Y., Ishida, C., Inoue, Y., Shiraki, H. & Maeda, Y. ( 1998; ). 71-kilodalton heat shock cognate protein acts as a cellular receptor for syncytium formation induced by human T-cell lymphotropic virus type 1. J Virol 72, 535–541.
    [Google Scholar]
  35. Sagara, Y., Inoue, Y., Kojima, E., Ishida, C., Shiraki, H. & Maeda, Y. ( 2001; ). Phosphatidylglycerol participates in syncytium formation induced by HTLV type 1-bearing cells. AIDS Res Hum Retroviruses 17, 125–135.[CrossRef]
    [Google Scholar]
  36. Sainis, I., Angelidis, C., Pagoulatos, G. & Lazaridis, I. ( 1994; ). The hsc70 gene which is slightly induced by heat is the main virus inducible member of the hsp70 gene family. FEBS Lett 355, 282–286.[CrossRef]
    [Google Scholar]
  37. Sainis, L., Angelidis, C., Pagoulatos, G. N. & Lazaridis, L. ( 2000; ). HSC70 interactions with SV40 viral proteins differ between permissive and nonpermissive mammalian cells. Cell Stress Chaperones 5, 132–138.[CrossRef]
    [Google Scholar]
  38. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Saphire, A. C., Guan, T., Schirmer, E. C., Nemerow, G. R. & Gerace, L. ( 2000; ). Nuclear import of adenovirus DNA in vitro involves the nuclear protein import pathway and hsc70. J Biol Chem 275, 4298–4304.[CrossRef]
    [Google Scholar]
  40. Schek, N. & Bachenheimer, S. L. ( 1985; ). Degradation of cellular mRNAs induced by a virion-associated factor during herpes simplex virus infection of Vero cells. J Virol 55, 601–610.
    [Google Scholar]
  41. Strom, T. & Frenkel, N. ( 1987; ). Effects of herpes simplex virus on mRNA stability. J Virol 61, 2198–2207.
    [Google Scholar]
  42. Sullivan, C. S. & Pipas, J. M. ( 2001; ). The virus–chaperone connection. Virology 287, 1–8.[CrossRef]
    [Google Scholar]
  43. Tomalski, M. D., Wu, J. G. & Miller, L. K. ( 1988; ). The location, sequence, transcription, and regulation of a baculovirus DNA polymerase gene. Virology 167, 591–600.[CrossRef]
    [Google Scholar]
  44. Van Oers, M. M., Van Marwijk, M., Kwa, M. S., Vlak, J. M. & Thomas, A. A. ( 1999; ). Cloning and analysis of cDNAs encoding the hypusine-containing protein eIF5A of two lepidopteran insect species. Insect Mol Biol 8, 531–538.[CrossRef]
    [Google Scholar]
  45. Van Oers, M. M., Van der Veken, L. T., Vlak, J. M. & Thomas, A. A. ( 2001; ). Effect of baculovirus infection on the mRNA and protein levels of the Spodoptera frugiperda eukaryotic initiation factor 4E. Insect Mol Biol 10, 255–264.[CrossRef]
    [Google Scholar]
  46. Vaughn, J. L., Goodwin, R. H., Tompkins, G. J. & McCawley, P. ( 1977; ). The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 13, 13–17.
    [Google Scholar]
  47. Wang, L., Zhang, H., Solski, P. A., Hart, M. J., Der, C. J. & Su, L. ( 2000; ). Modulation of HIV-1 replication by a novel RhoA effector activity. J Immunol 164, 5369–5374.[CrossRef]
    [Google Scholar]
  48. Wei, N. & Volkman, L. E. ( 1992; ). Hyperexpression of baculovirus polyhedrin and p10 is inversely correlated with actin synthesis. Virology 191, 42–48.[CrossRef]
    [Google Scholar]
  49. Yaffe, M. B. ( 2002; ). How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513, 53–57.[CrossRef]
    [Google Scholar]
  50. Zimmermann, R. ( 1998; ). The role of molecular chaperones in protein transport into the mammalian endoplasmic reticulum. Biol Chem 379, 275–282.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19270-0
Loading
/content/journal/jgv/10.1099/vir.0.19270-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error